Меню

Светодиодные индикаторы напряжения с часов

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Назначение элементов и принцип работы схемы

У многих читателей в доме установлены выключатели света со светодиодной подсветкой. Схема светодиодной подсветки выглядит следующим образом:

  1. Параллельно контакту выключателя включается цепочка, состоящая из гасящего резистора, светодиода и простого кремниевого диода.
  2. При разомкнутом выключателе электрический ток протекает через гасящий (токоограничивающий) резистор, включенные встречно-параллельно светодиоды и лампу накаливания.
  3. Во время одной из полуволн, когда положительное напряжение приложено к аноду LED, светоизлучающий диод светится. Тем самым не только обеспечивается подсветка выключателя, но и осуществляется светодиодная индикация напряжения.

Индикатор на светодиодах в действии

Если убрать из схемы выключатель, лампочку и провода, у нас останется цепочка, состоящая из резистора и двух диодов. Эта цепочка представляет собой простейший индикатор (указатель) переменного тока 220 В.

Остановимся подробнее на назначении элементов схемы. Выше мы указывали, что рабочий ток сигнального LED составляет около 10-15 мА. Понятно, что при непосредственном подключении светоизлучающего диода к сети 220 В через него будет протекать ток, во много раз превышающий предельно допустимое значение. Для того чтобы ограничить ток LED, последовательно с ним включают гасящий резистор. Рассчитать номинал резистора можно по формуле:

R = (U max – U led) / I led

  • U max – максимальное измеряемое напряжение;
  • U led – падение напряжения на светодиоде;
  • I led – рабочий ток светоизлучающего диода.

Выполнив простейший расчет, для сети 240 В мы получим номинал резистора R1 равный 15-18 кОм. Для сети 380 В нужно применить резистор, имеющий сопротивление 27 кОм.

Кремниевый диод выполняет функцию защиты от перенапряжения. Если он отсутствует, при отрицательной полуволне U на запертом светодиоде будет падать 220 В или 380 В. Большинство светоизлучающих диодов не рассчитано на такое обратное напряжение. Из-за этого может произойти пробой p-n перехода LED. При встречно-параллельном подключении кремниевого диода, во время отрицательной полуволны он будет открыт и U на светодиоде не превысит 0,7 В. LED будет надежно защищен от высокого обратного напряжения.

На основе рассмотренной схемы можно сделать индикатор напряжения 220/380 В. Достаточно дополнить радиоэлементы двумя щупами и поместить их в подходящий корпус. Для изготовления корпуса индикатора подойдет большой маркер или толстый фломастер. Можно разместить радиодетали на самодельной печатной плате или выполнить соединения навесным способом.

Материалы для сборки индикатора

В маркере проделывают отверстие, в которое вставляют светодиод. На одном конце корпуса закрепляют металлический щуп. Через второй конец корпуса пропускают провод, идущий ко второму щупу или изолированному зажиму «крокодил».

Несмотря на простоту конструкции, устройство позволит проверять наличие напряжения на выходе автоматического выключателя или в розетке, найти сгоревший предохранитель в распределительном щите. Заметим, что приведенная схема индикатора применяется и в промышленных изделиях.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Схема индикатора напряжения на светодиодах

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

Работа с постоянным током

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Схема индикатора напряжения на светодиодах от 5 до 600 Вольт

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока.

Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Индикатор для микросхем – логический пробник

Научившись создавать простейший пробник электрика своими руками, на основе LED также можно сделать простой логический пробник, который поможет отыскать неисправности в цифровых устройствах.

Логические пробники появились на заре вычислительной техники. При помощи них специалисты анализировали логические уровни на входах и выходах цифровых микросхем. Высокому уровню (напряжению) на выходе логического элемента присваивается значение логической «единицы», а низкому уровню – логического «нуля». Сопоставляя уровни на входе и выходе цифровой микросхемы, можно судить о ее исправности.

Для индикации «0» или «1» достаточно двух светодиодов. Поэтому светодиодные логические пробники имеют простую конструкцию. Для сборки простейшего логического пробника понадобятся:

  • 2 транзистора VT1 и VT2 n-p-n структуры;
  • 2 светоизлучающих диода;
  • несколько резисторов.

На транзисторах собирают 2 усилительных каскада с общим эмиттером. Усилительные каскады должны иметь непосредственную связь. В цепь коллектора транзисторов включают светодиоды красного и зеленого цвета.

Читайте также:  Нормально допустимые отклонения частоты напряжения

Схема логического пробника

Логический пробник работает следующим образом:

  1. При подаче логической единицы на вход пробника открывается транзистор VT1 и загорается красный светодиод. При этом VT2 оказывается запертым и зеленый светодиод не горит.
  2. При подаче на вход логического нуля VT1 запирается, при этом открывается транзистор VT2 и загорается зеленый LED.

Если на выходе проверяемого устройства с большой скоростью чередуются логические «0» и «1», то визуально будет казаться, что оба светодиода горят одновременно.

Рассмотренный пробник можно применять для проверки устройств, собранных как на микросхемах ТТЛ логики, так и на КМОП-микросхемах. При использовании прибора его питают от проверяемой схемы.

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой).

До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

схема индикатора напряжения на двухцветном светодиоде

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Вариант для автомобиля

Схема для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Детектора наличия опасного для жизни напряжения, изготовление

Выполнен прибор на трех транзисторах, без платы навесным монтажом.
Бесконтактный детектор высокого напряжения своими руками
Обратите внимание, что в схеме используются транзисторы разной структуры. Требований к ним особых нет, подойдут практически любые. В качестве элементов сигнализации используются светодиод и зуммер. Роль антенны играет кусок провода, длиной 5 см.
Бесконтактный детектор высокого напряжения своими руками
Питается детектор от двух мизинчиковых элементов.
Бесконтактный детектор высокого напряжения своими руками
Корпусом служит прозрачная пластиковая трубка.
Бесконтактный детектор высокого напряжения своими руками
После сборки, если все элементы схемы исправны, детектор начинает работать сразу и в настройке не нуждается.

Нюансы в работе индикатора напряжения

Собранный своими руками светодиодный индикатор, так же как и промышленные приборы данного типа, может применяться для проверки наличия напряжения. Измерительным прибором он не является, а лишь указывает на наличие или отсутствие напряжения. Приобретя некоторый опыт работы с указателем, можно по яркости свечения светоизлучающего диода определить величину напряжения между двумя проводниками. Однако для точных измерений нужно применять стрелочные или цифровые вольтметры.

В отличие от указателей с газоразрядными лампами светодиодный индикатор нельзя применять для поиска «фазы», прикасаясь к одному из щупов пальцем. Прибор имеет малое внутреннее сопротивление, и такой способ поиска фазного проводника грозит поражением электрическим током.

Выводы

Самостоятельно делают индикаторы по простым схемам. Никакие другие дорогостоящий детали не требуются. Для изготовления пробника можно использовать корпус высохшего маркера или неисправного мобильного телефона. На лицевую часть можно вывести щуп в виде штыря, на торец – кабель, оснащенный зажимом-«крокодильчиком» или щупом.

Смотрите видео

  • https://simplelight.info/raznoe/indikator-napryazheniya-na-svetodiodah.html
  • http://ledno.ru/svetodiody/samodelki/indikator-napryazheniya-220v.html
  • https://SvetodiodInfo.ru/texnicheskie-momenty/indikator-napryazheniya-na-svetodiodax.html
  • https://YaElectrik.ru/elektroprovodka/indikator-napryazheniya-svoimi-rukami
  • https://SdelaySam-SvoimiRukami.ru/5717-beskontaktnyj-detektor-vysokogo-naprjazhenija-svoimi-rukami.html
  • https://svetilnik.info/svetodiody/indikator-napryazheniya-na-svetodiodah.html

Как сделать индикатор напряжения на светодиодах

Индикатор напряжения на DIN-рейку

Указатель напряжения до 1000в

Работа с индикаторной отверткой (индикаторный пробник) для поиска напряжения

Источник



Индикаторы и дисплеи 4184

Вакуумно-люминесцентные знакосинтезирующие модули

ЖК дисплеи

ЖК индикаторы графические

ЖК индикаторы знакосинтезирующие

Люминесцентные и газоразрядные индикаторы

Цифровые сегментные индикаторы

OLED индикаторы

Еще индикаторы и дисплеи

Индикаторы и дисплеи — это устройства отображения буквенно-цифровой информации, а так же, различной графической символики. Одним из типов информационных устройств является OLED индикатор, органический светодиодный дисплей. Группа представителей такого класса от компании Winstar

обладают высокой передачей цвета, малым энергопотреблением, высокой контрастностью и большим углом обзора 180°. Область применения цветных дисплеев — МР3 плееры, автомагнитолы, сотовые телефоны, цифровые фотоаппараты. ЖК-дисплеи — дисплеи на основе жидких кристаллов. TFT панели от компании NEC оснащены светодиодной подсветкой, высокой яркостью и контрастностью, минимальным временем отклика, большим углом обзора, просты в применении, обладают качеством и надежностью конструкции. ЖК-индикаторы графические являются устройствами вывода информации на жидкокристаллический дисплей (модуль). Линейка изделий производителей МЭЛТ и Winstar оснащены встроенными контроллерами с низким энергопотреблением, светодиодной подсветкой, малым напряжением питания, 3В…5В, что позволяет применять приборы в различной электронике с автономным питанием. При покупке следует учитывать габариты модуля, тип контроллера, количество строк и точек в строке, и напряжение питания.

Читайте также:  Импульсный режим низкого напряжения

Цифровые сегментные индикаторы предназначены для отображения вывода буквенно-цифровой информации в электронных приборах. Модели изделий известных производителей Betlux и Kingbright применяются в широком спектре цифровой электроники. Наиболее популярны и востребованы семисегментные индикаторы, которые, в свою очередь, имеют разные технические параметры, что следует учитывать при подборе компонента. Схема включения на плюсовую шину с общим катодом или анодом, количество разрядов (1.2, 3.4, 5), цвет свечения (желтый, зеленый, красный, синий). Особенность 14-и и 16-и сегментных индикаторов — установка компонентов в аппаратуры для вывода необходимой дополнительной буквенной информации.

ЖК-индикаторы знакосинтезирующие — буквенно-цифровые модули, в составе которых находятся контроллеры и жидкокристаллические дисплеи. Особенности модулей компаний Data Vision и Vinstar является встроенный контроллер с прошивкой двух языков (русский/английский), малое энергопотребление, наличие светодиодной подсветки. Модули фирмы МЭЛТ имеют программно-переключаемые страницы знакогенератора с дополнительным алфавитом (русский, белорусский, украинский, казахский и английский). Изделия управляются по параллельному интерфейсу с записью данных в ОЗУ. Выбор необходимого индикатора производится по его параметрам.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Ижевск, Казань, Калуга, Кемерово, Киров, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Индикаторы и дисплеи» вы можете купить оптом и в розницу.

Источник

Светодиодные индикаторы напряжения с часов

Часы на микросхеме КА1016ХЛ1 и светодиодных индикаторах

Автор: Pushok62
Опубликовано 31.03.2019
Создано при помощи КотоРед.

Каких только конструкций электронных часов не встретишь сегодня на просторах Интернета! В основном они собраны на микроконтроллерах, и кроме функций отображения времени и будильника могут ещё отображать дату, день недели, температуру и т.д., в том числе с различными визуальными эффектами. В качестве дисплея могут выступать светодиодные, люминесцентные, газоразрядные, жидкокристаллические индикаторы и даже механически вращающиеся поверхности накопителей на жёстких дисках и лопастей вентиляторов. Несмотря на доступность повторения таких конструкций появилось желание вдохнуть новую жизнь в старые часы на микросхеме КА1016ХЛ1, собранные когда-то из набора радиоконструктора «Старт 2035», которые прослужили верой и правдой довольно длительное время. К сожалению (или к счастью), используемый в них «подсевший» от времени люминесцентный индикатор УИ-4 уже не найти в продаже, поэтому придётся заменить его на что-то другое. Кроме того, часы такого класса ничего «не умеют», кроме отображения текущего времени и работы примитивного будильника. В большинстве случаев этого, может быть, и достаточно. Но имеются и другие недостатки, такие как слишком большая яркость индикатора при слабом освещении и отсутствие резервного питания на случай отключения питающего напряжения.

Появилось желание ради спортивного интереса собрать часы на этой микросхеме, но на светодиодных индикаторах, с автоматической регулировкой их яркости и источником бесперебойного питания. Конечно, проще и дешевле было бы купить готовые часы, но захотелось выяснить, что же можно «выжать» из этой микросхемы. Ниже описано, что получилось в итоге.

Схема включения микросхемы КА1016ХЛ1 в целом не отличается от схем известных конструкций, описанных в книгах: [В. Борисов. Электронные часы из деталей радиоконструктора. В помощь радиолюбителю. Выпуск 106. с.39-49] и [С.А.Бирюков. Электронные часы на МОП интегральных микросхемах. МРБ 1178. с.35-39]. Вариант применения светодиодных семисегментных индикаторов также был описан в статьях Автомобильные часы на микросхеме КА1016ХЛ1 и [В.Каравкин. Автомобильный будильник на ИМС КА1016ХЛ1. Радиоконструктор, 2011, N4, с.32,33]. Однако, вместо счетверённого светодиодного индикатора пришлось применить отдельные индикаторы 8016B с общим анодом (высотой символа 0,8 дюйма), а вместо инверторов К561ЛН2 — транзисторные ключи. В ходе экспериментов выяснилось, что микросхема КА1016ХЛ1 совмещает по времени импульсы управления сетками С1..С5 для различных разрядов, если в них отображаются одинаковые цифры. Поэтому, за счёт параллельного включения сегментов, такие разряды светятся слабее. Например, при отображении значения времени «22:20» цифры «2» будут светиться заметно слабее, чем цифра «0». Первая версия часов так и работала, с цифровыми транзисторами VT1..VT8 типа DTC114EE в качестве инверторов и всего 8 ограничительными катодными резисторами в их коллекторных цепях, однако через некоторое время описанный эффект начал сильно раздражать. Поэтому было решено разъединить катоды индикаторов резисторами R17..R44 (их теперь стало 28 штук). Но при этом максимально допустимый ток через транзисторные ключи VT1..VT8 увеличился до 4 раз (при отображении четырёх одинаковых цифр), и применение цифровых транзисторов с максимальным током 100 мА стало невозможным. Теперь вместо них установлены более мощные BC817 с внешними резисторами в базовых цепях R1..R16 (раньше эти резисторы были встроены в состав цифровых транзисторов). Такая доработка потребовала изготовления новой печатной платы (но на плате последней ревизии сохранена возможность установки 8 ограничительных резисторов вместо 28, что может быть полезным для экспериментов по подбору их номинала с целью получения требуемой яркости свечения — ведь 8 резисторов легче заменить, чем 28). Примерные номиналы ограничительных резисторов для индикаторов различных цветов приведены в таблице на принципиальной схеме (самые лучшие с точки зрения энергопотребления — ярко-зелёные индикаторы, худшие — красные). Резисторы R54..R57 добавлены для надёжного закрывания ключей VT1..VT8 и исключения паразитной подсветки сегментов.

Для управления яркостью индикаторов сначала планировалось использовать метод широтно-импульсной модуляции на основе таймера NE555 и фоторезистора. При уменьшении освещённости сопротивление фоторезистора увеличивалось, и возрастала скважность формируемых импульсов, которые управляли подачей питания на коллекторы анодных ключей VT9..VT12. Однако, при проверке этого метода оказалось, что импульсы с выхода таймера идут вразнобой с сеточными импульсами, и вместо регулировки яркости получается «мельтешение» разрядов, особенно при малой освещённости. Чтобы не усложнять уже и без того «навороченную» схему, регулировку яркости было решено сделать простым плавным изменением уровня питающего напряжения на коллекторах VT9..VT12 через мощный транзистор VT13 с достаточно большим коэффициентом усиления. За счёт импульсного характера управления индикаторами рассеиваемая узлом мощность оказалась незначительной. Но таймер всё равно пригодился – для управления миганием точек, так как штатный вывод 5 микросхемы КА1016ХЛ1 для этого непригоден также из-за особенностей формирования сеточных импульсов: точки средних индикаторов HL2 и HL3 зажигаются не одновременно, и этот эффект вдобавок зависит от комбинации отображаемых знаков.

Читайте также:  Для чего нужен стабилизаторы напряжения трехфазные

За основу источника бесперебойного питания (UPS), показанного на основной схеме часов, взят Бесперебойник для часов, который показал наилучшие результаты по сравнению с другими конструкциями: Преобразователь напряжения 1,5 — 9 вольт и DC-DC преобразователь 1.2-9 вольт. Номиналы деталей изменены таким образом, чтобы обеспечить нормальное функционирование микросхемы КА1016ХЛ1. Резистор 2R2 закрывает транзистор 2VT1 при появлении внешнего питания, прерывая генерацию и исключая разряд аккумулятора. Последний подзаряжается через резистор 2R1, номинал которого зависит от ёмкости применённого аккумулятора (меньший номинал — для большей ёмкости). Вместо светодиода установлен обычный диод 2VD2, отключающий от аккумулятора лишние цепи при пропадании внешнего питания. Стабилитрон 2VD1 с напряжением стабилизации 2В служит для защиты от перенапряжения при работе без нагрузки с отсоединённым аккумулятором, ограничивая в этом режиме неконтролируемый рост напряжения на базе транзистора 2VT1 и, как следствие, выходного напряжения преобразователя. В то же время стабилитрон практически не нагружает аккумулятор, когда он подключён. Микросхема КА1016ХЛ1 категорически отказывается работать при напряжении питания меньше 12 вольт, хотя в некоторых работах утверждается, что она работает при напряжении питания от 8 до 18 вольт. Замечено, что увеличение напряжения питания выше уровня 15 вольт, даже в виде импульсов, приводит к выводу микросхемы из строя. Поэтому выходное напряжение источника бесперебойного питания выбрано порядка 13,5..13,7 вольт при работе от аккумулятора и 14,5..14,7 вольт – при работе от внешнего питания, что гарантирует надёжную работу часов в любом режиме. Источник бесперебойного питания собран на отдельной плате вместе с дополнительными элементами блока питания, не показанными на основной схеме:

К таким дополнительным элементам относятся следующие дешёвые готовые модули: миниатюрный источник питания 220 AC – 5V 0,6A DC и преобразователь напряжения DC-DC MT3608, используемый для формирования напряжения 15В из напряжения 5В. Кроме того, на плате для питания часов предусмотрен разъём Micro USB (если планируется питание только через этот разъём, плату блока питания 5В можно не устанавливать).

Часы собраны на двух платах размером 100×50 мм, соединённых через втулки M3: на основной плате собственно часов и на плате блока питания с источником бесперебойного питания. Указанные размеры плат (не более 100 мм) позволяют недорого заказать их изготовление в Китае. Если плату блока питания ещё можно изготовить методом ЛУТ, то основную плату уже, наверное, не получится. Нужно заметить, что печатные платы и светодиодные индикаторы – самые дорогие элементы этой конструкции. Вид собранной основной платы часов снизу:

Некоторые радиоэлементы могут быть выводными и напаиваться на плату снизу, например: мощный ограничительный резистор R49, излучатель BA1 (можно использовать подходящий излучатель с сопротивлением катушки порядка 40 Ом или пьезоэлектрический, включив параллельно его выводам резистор номиналом 10 кОм), кварцевый резонатор ZQ1, подстроечный конденсатор C9, электролитический конденсатор C5:

На схеме предусмотрены элементы цепи сброса микросхемы VD6, VD7, C11, однако практика показала, что в них нет необходимости. Следует учитывать, что микросхема чувствительна к статическому напряжению, а также к остаткам флюса или другой жидкости (спирт, вода). Поэтому после монтажа перед включением плату нужно тщательно промыть и просушить феном для волос.

Для включения и выключения будильника можно использовать подходящий кнопочный выключатель с фиксацией или ползунковый. Тактовые кнопки управления используются с общей высотой 15,5 мм, но можно использовать и другие подходящие выключатели без фиксации или с фиксацией.

Для передней панели подойдёт прозрачное оргстекло толщиной 2 мм, в качестве задней панели – такой же материал или непрозрачный пластик. Можно обклеить оргстекло светлой тонирующей автомобильной плёнкой, но в этом случае яркость свечения индикаторов, возможно, придётся увеличивать.

Вид собранной основной платы спереди:

Один из вариантов готовой конструкции спереди:

Для защиты от пыли сверху можно зафиксировать крышку из тонкого прозрачного материала, например, плёнки, используемой для ламинирования. Такой же материал удобно использовать для защитного кожуха на плате блока питания, ограничивающего доступ к высоковольтным цепям:

Вид платы блока питания сверху (показана старая версия платы, поэтому могут быть отличия):

Вместо перемычки 2J1 на плате блока питания можно использовать подходящий ползунковый переключатель:

Для проверки функционирования источника бесперебойного питания (пока без платы часов) нужно подключить предварительно заряженный аккумулятор (напряжение на нём должно быть не меньше 1,2..1,4 вольт), замкнув перемычку 2J1, и проконтролировать напряжение на выходе (U-рез; U+рез) — оно должно быть в указанных на схеме пределах. Затем подсоединить к контактам разъёма (U-рез; U+рез) нагрузку в виде резистора номиналом 10 кОм (выводы последнего можно вставить в отверстия гнездового разъёма) – выходное напряжение должно оставаться в допуске. Можно при этом проконтролировать напряжение на аккумуляторе – оно должно оставаться на уровне не ниже 1,2 вольт, т.е. не должно «проседать» под нагрузкой. Предел работоспособности наступает при напряжении на аккумуляторе меньше порядка 1В — в этом случае напряжение на выходе преобразователя становится меньше 12 вольт, и микросхема КА1016ХЛ1 перестаёт работать. При проведении тестового «прогона» источника бесперебойного питания с аккумулятором б/у неизвестной ёмкости (из старой переносной телефонной трубки) микросхема КА1016ХЛ1 проработала без сбоев 8 часов! Необходимо помнить, что соединять платы между собой нужно при отключённом аккумуляторе.

Органы управления часов:

При длительном отсутствии внешнего электропитания необходимо выключить источник резервного питания (UPS) перемещением движка переключателя вниз. После подачи питания перевести движок переключателя вверх.

Четыре экземпляра таких часов с разными цветами свечения индикаторов (показаны на фото в начале статьи), работают без проблем уже около года. В процессе монтажа таких часов можно отрабатывать навыки пайти SMD элементов, начиная с типоразмера 0603.

Во вложении: рисунки печатных плат в формате Sprint Layout и гербер-файлы для заказа на производстве.

Источник