ElectronicsBlog
Обучающие статьи по электронике
Обратная связь. Часть 1. Виды обратной связи
Как я уже говорил в одном из предыдущих постов я начал публиковать цикл статей об операционных усилителях. В прошлой статье я рассмотрел две основные схемы включения (инвертирующую и неинвертирующую) и некоторые схемы с применением операционных усилителей. В данной статье я буду рассматривать такую тему как обратная связь.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Зачем нужна обратная связь
В отличие от идеальных операционных усилителей (ОУ), имеющих равномерную АЧХ, то есть их коэффициент усиления не изменяется в зависимости от частоты входного сигнала, реальные ОУ имеют коэффициент усиления, который с ростом частоты усиливаемого сигнала уменьшается. Кроме того в ОУ с увеличением частоты сигнала происходит фазовый сдвиг между входным и выходным сигналом, вследствие этого на некоторых частотах усиливаемого сигнала происходит самовозбуждение схемы, то есть усилитель превращается в генератор. Это всё приводит к уменьшению качественных показателей электронных схем.
Одним из наиболее распространённых и эффективных способов влияния на качественные параметры электронных схем с ОУ является применение обратной связи (ОС). Стоит отметить, что ОС широко применяется не только с ОУ, но и со многими другими электронными схемами, поэтому всё, что будет сказано про использование ОС с ОУ, относится и ко всем другим схемам с ОС.
Обратная связь определяется, как связь выходной цепи усилителя с его входной цепью, то есть когда усиленный сигнал с выхода усилителя передается на его вход через цепи, которые специально вводятся для этой цели (внешняя ОС) или через цепи, которые имеются в усилителе для выполнения других функций (внутренняя ОС). На рисунке ниже показана структурная схема усилителя с обратной связью
Структурная схема усилителя с обратной связью.
На рисунке выше показана структурная схема усилителя с коэффициентом усиления К, который охвачен внешней цепью ОС с коэффициентом передачи β. Стрелки на схеме показывают направление прохождения сигнала. Таким образом, часть усиленного сигнала с выхода усилителя поступает через цепь ОС на вход усилителя, где складывается с внешним сигналом. В результате на входе усилителя возникает суммарный входной сигнал, который может быть больше или меньше внешнего сигнала.
Виды обратной связи
Если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается больше амплитуды внешнего сигнала, то данная цепь ОС называется положительной обратной связью (ПОС), а в случае если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается меньше амплитуды внешнего сигнала, то такая ОС называется отрицательной обратной связью (ООС).
Путём введения ОС удаётся достаточно сильно изменить процесс работы и свойства усилителя, которые определяются как свойством усилителя, так и свойством цепи ОС. На свойства цепи ОС существенное влияние оказывает её вид, то есть принцип её действия, зависящий в общем случае от полярности и фазы напряжения ОС, а также способа её соединения с входными и выходными цепями усилителя.
Различают четыре вида обратных связей:
- параллельная обратная связь по напряжению.
- параллельная обратная связь по току.
- последовательная обратная связь по напряжению.
- последовательная обратная связь по току.
Кроме того существует также смешанная обратная связь, но из-за сложности в изготовлении и настройке данный вид обратной связи большого распространения не получил.
Рассмотрим, как образуется каждый вид обратной связи.
Параллельная обратная связь по напряжению
Параллельная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выход цепи ОС – параллельно входу усилителя.
Структурная схема параллельной обратной связи по напряжению.
Таким образом, входное напряжение цепи ОС UСВ равно выходному напряжению на нагрузке UН, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.
То есть данная ОС образуется при параллельном соединении входа и выхода усилителя через цепь ОС. Данный вид ОС характеризуется тем, что действие ОС уменьшается при уменьшении сопротивления нагрузки и источника сигнала, а при коротком замыкании входа или выхода действие данного вида ОС прекращается.
Параллельная обратная связь по току
Параллельная обратная связь по току образуется подключением входа цепи ОС параллельно резистору RT, а выход цепи ОС подключён параллельно входу усилителя.
Структурная схема параллельной обратной связи по току.
Данный вид ОС характеризуется следующими параметрами: входное напряжение ОС UOC пропорционально выходному току усилителя протекающего через резисторы RT и RH, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.
Действие данного вида ОС уменьшается при уменьшении сопротивления источника сигнала, входного сопротивления усилителя, а также при уменьшении сопротивления резистора RT или увеличении сопротивления нагрузки. То есть при коротком замыкании на входе схемы и отсутствии нагрузки данная ОС не действует.
Последовательная обратная связь по напряжению
Последовательная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выхода цепи ОС – последовательно с входом усилителя.
Структурная схема усилителя с последовательной цепью ОС по напряжению.
В последовательной обратной связи по напряжению входное напряжение UСВ равно выходному напряжению на нагрузке UН. В тоже время сумма выходного напряжения цепи ОС UОС и напряжения источника сигнала UСИГ равна входному напряжению усилителя UВХ.
Таким образом, последовательная ОС по напряжению уменьшает своё действие при увеличении сопротивлению источника сигнала и уменьшении сопротивления нагрузки и выходного сопротивления усилителя. В случае, когда на выходе короткое замыкание, а также в режиме холостого хода на входе данный вид ОС перестаёт действовать.
Последовательная обратная связь по току
Последовательная обратная связь по току образуется путём подключения входа цепи ОС параллельно резистору RT, а выход цепи ОС подключен последовательно с источником сигнала и входом усилителя.
Структурная схема усилителя с последовательной обратной связью по току.
Последовательная обратная связь по току имеет следующие характеристики. Входное напряжение цепи ОС UCB пропорционально выходному току усилителя ICB, который протекает через резисторы RH, RT и RВЫХ, а выходное напряжение цепи ОС UОС совместно с напряжением источника сигнала UСИГ составляет входное напряжение усилителя UВХ.
Из вышеизложенного следует, что при уменьшении сопротивлений RH, RT и RВЫХ, а также при увеличении входного сопротивления усилителя и источника сигнала действие последовательной ОС по току уменьшается. А при отсутствии нагрузки и холостом ходу на входе схемы данный вид ОС сводится к нулю.
Данная статья не может вместить все сведении об обратной связи, поэтому в ней рассмотрены только схемы различных видов обратных связей. О влиянии ОС на параметры усилительных устройств будет рассказано в следующей статье.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Источник
2.5.Входное и выходное напряжения.
Выходное напряжение ОУ зависит от разности напряжений на его входах , где
– напряжения на не инвертирующем и инвертирующем входах усилителя. Поэтому для ОУ справедливо:
, (1.3)
где K – коэффициент усиления ОУ без обратной связи (разомкнутого усилителя). Предположим, что (напряжение на входе (+) положительно по отношению к напряжению на входе (–)), тогда выходное напряжение положительно, рис. 1.7,а.
В случае если (напряжение на входе (+) отрицательно по отношению к напряжению на входе (–)), выходное напряжение отрицательно, рис. 1.7,б.
Общая зависимость представлена на рис. 1.8. Выходное напряжение линейно зависит от
лишь в некотором диапазоне изменения последнего (от
до
) и не может превышать величины UНАС.
Рис. 1.8. Амплитудная характеристика операционного усилителя
2.6.Два правила, справедливые для идеального оу.
Определим значения и
. В соответствии с (1.3) имеем
(1.4)
Величина K чрезвычайно велика; она может достигать 200000 единици более. Приняв K=200000, для ОУ, запитанного от источника 12 В, на основании (1.4) получим:
,
.
Здесь допущено, что . Напряжение 60 мкВ очень мало. В типичном измерительном приборе напряжения наведенных шумов, сетевых наводок и напряжения от токов утечки могут превышать 1 мВ (1000 мкВ). В силу этого можно принять
. Последнее позволяет сформулировать важное правило.
Правило 1. Если ОУ находится в линейном режиме (выходное напряжение ), разность напряжений между его входами равна нулю (
).
Для того чтобы ОУ работал в линейном режиме, в схему необходимо ввести отрицательную обратную связь (ООС). Образно можно сказать, что, будучи охвачен ООС операционный усилитель сделает все от него зависящее, чтобы устранить разность напряжений между своими входами.
ОУ является хорошим усилителем напряжения с большим входным сопротивлением. Для идеального ОУ сопротивления по обоим входам можно считать равными бесконечности. Отсюда следует второе важное правило.
Правило 2. Входы ОУ тока не потребляют.
2.7.Идеальный и реальный оу.
Для идеального ОУ справедливо:
Коэффициент усиления дифференциального сигнала K бесконечно велик и не зависит от частоты сигнала.
Коэффициент усиления синфазного сигнала (напряжения общего для обоих входов) KСИНФ равен нулю.
Сопротивление по обоим входам бесконечно велико.
Напряжение смещения равно нулю.
Скорость изменения выходного напряжения бесконечно велика.
Дрейф (изменение во времени выходного напряжения) отсутствует.
Параметры реального ОУ несколько хуже. Однако в большинстве случаев для анализа схем на операционных усилителях можно использовать оба правила, справедливые для идеального ОУ. Этот подход и будет использоваться в дальнейшем. Знание реальных значений параметров конкретного ОУ позволяет оценить погрешность схемы преобразования сигнала и решить вопрос о целесообразности использования данного ОУв конкретной схеме.
2.8.Параметры и характеристики оу.
Параметры и характеристики ОУ можно условно подразделить на входные, выходные и характеристики передачи.
К входным параметрам относятся: напряжение смещения; средний входной ток; разность входных токов; входные сопротивления; коэффициент ослабления синфазного сигнала (синфазного напряжения); диапазон синфазных входных напряжений; температурный дрейф напряжения смещения; температурные дрейфы среднего входного тока и разности входных токов; напряжение шумов, приведенное к входу; коэффициент влияния нестабильности источника питания на напряжение смещения.
Напряжение смещения ЕСМ– дифференциальное входное напряжение, при котором выходное напряжение усилителя равно нулю.
Средний входной ток IВХ– среднеарифметическое значение токов обоих входов усилителя, измеренных при таком входном напряжении UВХ, при котором выходное напряжение UВЫХ равно 0. Эти токи обусловлены необходимостью обеспечить нормальный режим работы входного дифференциального каскада на биполярных транзисторах. В случае использования полевых транзисторов это токи всевозможных утечек. Другими словами, входные токи – это токи, потребляемые входами ОУ.
Разность входных токов ΔIВХ– это разность токов, потребляемых входами ОУ.
Входные сопротивленияв зависимости от характера подаваемого сигнала подразделяются на дифференциальное (для дифференциального сигнала) и синфазное (сопротивление общего вида).
Входное сопротивление для дифференциального сигнала RВХ. ДИФ– это полное входное сопротивление со стороны любого входа, в то время как другой вход соединен с общим выводом (заземлен).
Входное сопротивление для синфазного сигнала RВХ. СИНФхарактеризует изменение среднего входного тока при приложении к входам синфазного напряжения. Оно на несколько порядков выше сопротивления для дифференциального сигнала.
Коэффициент ослабления синфазного сигнала КОС СИНФопределяется как отношение напряжения синфазного сигнала, поданного на оба входа, к дифференциальному входному напряжению, которое обеспечивает на выходе тот же сигнал, что и в случае синфазного напряжения:
(1.5)
С учетом (1.5) напряжение на выходе ОУ, появляющееся при одновременной подаче дифференциального и синфазного входных сигналов, равно .
Для каждого ОУ указывается диапазон изменения UВХ. ДИФ и UВХ. СИНФ, превышение предельных значений, которых может привести к потере работоспособности усилителя.
Температурные дрейфы напряжения смещения и входных токовхарактеризуют изменения соответствующих параметров с температурой и составляют мкВ/°С и нА/°С. Наиболее важно учитывать данные параметры в прецизионных устройствах, так как компенсация их влияния на выходное напряжение затруднительна. Температурные дрейфы являются основной причиной появления температурных погрешностей устройств с ОУ.
Коэффициент влияния нестабильности источника питания КП– отношение изменения напряжения смещенияΔЕСМ к вызвавшему его изменению одного из питающих напряжений ΔUП.
К группе выходных параметров относятся выходное сопротивление, напряжение и ток выхода.
Коэффициент усиления по напряжению ОУК– отношение изменения выходного напряжения к вызвавшему его изменению дифференциального входного напряжения при работе усилителя на линейном участке характеристики:
Частота единичного усиления f1 это частота, на которой модуль коэффициента усиления ОУ равен единице.
Скорость нарастания выходного напряжения это максимальная скорость изменения выходного сигнала при максимальном значении его амплитуды. Скорость нарастания определяется при подаче на вход усилителя импульса напряжения прямоугольной формы.
Источник
Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу
Статья является частью руководства, посвященного практическим аспектам и особенностям проектирования электроники с использованием операционных усилителей (ОУ) – от выбора типа ОУ до тайных приемов опытного разработчика и хитростей отладки. Руководство написано Брюсом Трампом, инженером-разработчиком с почти тридцатилетним стажем, успевшим до Texas Instruments поработать в легендарной компании Burr-Brown. В настоящее время Трамп является ведущим блогером информационного ресурса Texas Instruments “E2E” по аналоговой тематике и готовит к печати книгу об операционных усилителях.
Мы будем публиковать перевод руководства Трампа на нашем сайте регулярно, дважды в месяц.
У разработчиков зачастую возникают вопросы по поводу допустимых значений питающих напряжений, диапазонов входных и выходных напряжений операционных усилителей (ОУ). Я попытаюсь прояснить ситуацию, чтобы устранить часто возникающую путаницу.
Во-первых, у обычного ОУ нет вывода земли. Стандартный операционный усилитель «не знает», какой потенциал считать нулевым. Таким образом, ОУ не различает, работает он с биполярным питанием (dual supply, ±) или с однополярным (single power supply). Схема будет прекрасно функционировать, пока значения питающих, а также входных и выходных напряжений будут находиться в рамках допустимых диапазонов.
Есть три наиболее важных диапазона рабочих напряжений:
- Диапазон питающих напряжений (supply-voltage range) определяется как полное напряжение между выводами питания. Например, при заявленном диапазоне ±15 В полный размах напряжения составит 30 В. Диапазон рабочих напряжений питания для ОУ может быть обозначен как 6…36 В. Тогда минимальный размах напряжений составляет ±3 или +6 В. Максимальный размах будет ±18 или +36 В. Диапазон напряжений питания может составлять и вовсе 6/+30 В. И – да, несимметричное питание также может использоваться, если учесть замечания следующих пунктов.
- Входное синфазное напряжение (common-mode voltage range, СМ) обычно указывается относительно значений рабочих напряжений питания, как показано на рисунке 1. В этом случае в документации используется формульная запись, например, для гипотетического ОУ с синфазным напряжением на 2 В больше отрицательного напряжения питания и на 2,5 В меньше положительного напряжения будет использована примерно такая запись: от (V-)+2 В до (V+)-2,5 В.
- Диапазон выходного напряжения (output-voltage range) или размах выходного напряжения (output-swing capability) так же, как и в предыдущем случае, указывается относительно значений питающих напряжений. В приведенном примере – от (V-)+1 В до (V+)-1,5 В.
На рисунках 1, 2 ,3 представлена буферная схема повторителя напряжения с коэффициентом усиления G = 1. Ключевая особенность схемы заключается в том, что выходное напряжение усилителя на рисунке 1 будет на 2 В больше, чем значение отрицательного напряжения питания, и на 2,5 В меньше, чем значение положительного напряжения питания. Так получается из-за ограниченного значения входного синфазного напряжения CM. Вам потребуется изменить коэффициент усиления, чтобы расширить диапазон выходных напряжений до максимума.
Схема на рисунке 1 является типовой для ОУ с биполярным питанием. Однако использовать однополярное питание также возможно, если не выходить за границы разрешенных диапазонов напряжений.
Рис. 1. Диапазоны входных и выходных напряжений типового ОУ с биполярным питанием (dual supply)
На рисунке 2 представлен так называемый ОУ с однополярным питанием (single-supply op amp). Для него допустимое синфазное напряжение может быть равно размаху напряжения питания, а зачастую даже выходит за его границы. Это позволяет использовать такой ОУ в широком перечне схем, которые работают с близкими к нулю потенциалами. ОУ, который не заявлен как усилитель с однополярным питанием, на самом деле также способен работать в однополярной конфигурации в некоторых схемах, однако реальный однополярный усилитель оказывается более универсальным.
Рис. 2. Диапазоны входных и выходных напряжений типового ОУ с однополярным питанием (single-supply op amp)
В буферной схеме с коэффициентом усиления G = 1 такой ОУ обеспечивает потенциал выхода на 0,5 В выше уровня отрицательного напряжения питания за счет ограничения выходного диапазона и на 2,2 В ниже значения положительного напряжения питания за счет ограничения входного синфазного напряжения.
На рисунке 3 показан rail-to-rail ОУ. Вход rail-to-rail способен работать со входными напряжениями, равными или даже превосходящими уровни питающих напряжений. Выход типа rail-to-rail подразумевает, что выходные напряжения ОУ максимально близки к значениям напряжений питания, и обычно отличаются от них всего на 10…100 мВ. Некоторые ОУ обозначают только как усилители с выходом типа «rail-to-rail» и не упоминают о входных характеристиках, показанных на рисунке 3. Технологию «Rail-to-rail» чаще всего применяют для ОУ с однополярным питанием 5 В и ниже, чтобы максимально эффективно использовать ограниченный диапазон питающих напряжений.
Рис. 3. Диапазоны входных и выходных напряжений типового rail-to-rail ОУ
Усилители rail-to-rail весьма привлекательны благодаря менее жестким ограничениям диапазонов используемых напряжений, однако они не всегда являются оптимальным выбором. Как правило, приходится искать компромиссы с учетом значений других параметров. Именно для этого и нужны разработчики аналоговых схем.
Список опубликованных глав
-
- Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу
- Что нужно знать о входах rail-to-rail
- Работа с напряжениями близкими к земле: случай однополярного питания
- Напряжение смещения и коэффициент усиления с разомкнутым контуром обратной связи — двоюродные братья
- SPICE-моделирование напряжения смещения: как определить чувствительность схемы к напряжению смещения
- Где выводы подстройки? Некоторые особенности выводов коррекции напряжения смещения
- Входной импеданс против входного тока смещения
- Входной ток смещения КМОП- и JFET-усилителей
- Температурная зависимость входного тока смещения и случайный вопрос на засыпку
- Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
- Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
- Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины
- Приручаем нестабильный ОУ
- Приручаем колебания: проблемы с емкостной нагрузкой
- SPICE-моделирование устойчивости ОУ
- Входная емкость: синфазная? дифференциальная? или…?
- Операционные усилители: с внутренней компенсацией и декомпенсированные
- Инвертирующий усилитель с G = -0,1: является ли он неустойчивым?
- Моделирование полосы усиления: базовая модель ОУ
- Ограничение скорости нарастания выходного сигнала ОУ
- Время установления: взгляд на форму сигнала
- Шум резисторов: обзор основных понятий
- Шумы операционного усилителя: неинвертирующая схема
- Шумы ОУ: как насчет резисторов обратной связи?
- 1/f-шум: фликкер-шум
- ОУ, стабилизированные прерыванием: действительно ли они шумные?
- Развязывающие конденсаторы: они нужны, но зачем?
- Неиспользуемые операционные усилители: что с ними делать?
- Защита входов от перенапряжений
- Могут ли дифференциальные ограничительные диоды на входе ОУ влиять на его работу?
- ОУ в режиме компаратора: допустимо ли это?
Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ
Источник