Меню

Тема электровозы переменного тока

Электровозы переменного тока — Устройство электровоза (Часть 3)

Опубликовано 15.06.2020 · Обновлено 04.02.2021

Итак, теперь углубимся в сложный мир электровозов переменного тока. Электровоз переменного тока («переменник») очень сложная машина. На нем установлено гораздо больше оборудования, он тяжелее и мощнее своего собрата «постоянника» и вот почему.

Электровоз ВЛ80с с поездом зимой

Электровоз переменного тока ВЛ80С

Особенности переменного электрического тока

Свойства переменного тока существенно отличаются от свойств тока постоянного, мы это знаем из курса физики. Одно из его очень положительных свойств – это возможность трансформации, то есть величину тока можно изменять, увеличивать или уменьшать, так сказать трансформировать, это достигается применением таких электротехнических устройств как трансформаторы тока, которые бывают и понижающими, и повышающими. Именно с применением трансформаторов и производится регулировка напряжения на тяговых электродвигателях электровозов переменного тока.

В чем разница между постоянным и переменным током

Но ведь на данных электровозах установлены тяговые электродвигатели (ТЭД) тока постоянного, как же все эти устройства работают в одной цепи? В принципе несложно. Переменный ток перед поступлением на ТЭД после прохождения трансформатора выпрямляется в установках именуемых – выпрямительными (ВУ). В них установлены полупроводниковые выпрямители – диоды, называемые на профессиональном языке «вентили лавинные» (ВЛ), а из курса физики нам конечно известно, что диод обладает свойством «выпрямлять» переменный ток в постоянный (помните р-n переходы, дырочная проводимость и все такое).

Выпрямительный диод (вентиль) на электровозе

Постоянный ток потому и постоянный, что протекает неизменно от плюса к минусу, не меняя ни направления, ничего, его можно изобразить как просто прямую линию. А вот переменный ток ведет себя не так, он постоянно меняет свое направление и амплитуду, если нарисовать его на графике, то мы получим волновую картину. Так вот верх и низ этой самой нарисованной нами волны называются полупериодами, а диод (вентиль) – это полупроводниковый прибор, пропускающий ток только в одном направлении (один полупериод), поэтому выпрямленный ток становиться более-менее аналогичным току постоянному.

Устройство электровозов переменного тока

Крышевое оборудование включает в себя помимо токоприемника – главный выключатель(ГВ), воздушные жалюзи вентиляторов, изоляторы, шины и межсекционные шунты, главные воздушные резервуары, соединяемые посредством трубопроводов.

Главный выключатель (ГВ) электровоза

Силовую цепь электровоза к токоприемнику подключает главный выключатель (ГВ) – пневматический контактор, который также отключает силовую цепь при перегрузках, и ненормальных режимах работы. По габаритам он меньше, чем выключатель быстродействующий (БВ) электровозов постоянного тока, поэтому в отличие от БВ он устанавливается на крыше, а не в кузове.

В кузове установлены:

  • сам тяговый трансформатор (как правило посредине), выпрямительные установки (как правило над каждой тележкой),
  • выпрямительная установка возбуждения (ВУВ),
  • мотор-вентиляторы,
  • мотор-компрессоры,
  • фазорасщепители,
  • реверсоры,
  • тормозные переключатели,
  • установки для переключения воздуха (УПВ),
  • балластные резисторы (для электрического торможения),
  • силовые электропневматические и пневматические контакты, контакты цепей управления

и другие аппараты, необходимые для работы электровоза.

Все эти устройства размещаются в высоковольтной камере (ВВК), поделенной на блоки силовых аппаратов (БСА). Низковольтные электрические контакты и реле цепей управления располагаются на панелях, не закрываемых защитными шторками.

Высоковольтная камера (ВВК) электровоза

Вентиляторов устанавливается больше, чем в постоянниках, от 3 до 4, в грузовых электровозах в секции устанавливается один мотор-компрессор, в односекционных пассажирских два. Тяговый трансформатор – это довольно большая конструкция, он размещается в большом корпусе, внутри которого залито трансформаторное масло, охлаждаемое в контуре охлаждения, путем перегонки масла через наружные секции охлаждения специальным маслонасосом, на крыше трансформатора расположены на изоляторах его главный ввод и выводы.

тяговый трансформатор электровоза

Вентиляторы охлаждают все ТЭД, выпрямительные установки, балластные резисторы при электрическом торможении. Электродвигатели вентиляторов, мотор-компрессоров и маслонасоса асинхронные, переменного тока, вся эта группа называется – вспомогательные машины.

Ну как, много? Конечно, поэтому и электровоз получается потяжелее и посложнее. А как это все работает? Начнем разбираться.

Как работает электровоз переменного тока

Трансформатор имеет две основных обмотки – высшего и низшего напряжения. На отечественных электровозах регулирование напряжения ТЭД осуществляется на стороне низшего напряжения, то есть на обмотке низшего напряжения. Она делится на секции, которые задействуются в регулировании напряжения. Также на стороне низшего напряжения имеется обмотка собственных нужд, для питания вспомогательных машин и цепей управления.

тяговый трансформатор электровоза

Уже понятно, что регулирование напряжение осуществляется путем подключения или отключения части вторичной обмотки трансформатора. Но как это делается практически? Это можно осуществить электрическим контроллером (ЭКГ) с контакторами и посредством тиристоров (управляемых диодов), устанавливаемых в выпрямительно-инверторных преобразователях (ВИП), этот очень хороший и прогрессивный способ мы рассмотрим ниже.

А сейчас разберемся как эту регулировку осуществить электромеханическим способом. Практически осуществить это не так-то просто. Предположим, что в начале пуска ЭКГ замкнул один контактор и на ТЭД подводится напряжение небольшой секции вторичной обмотки. Чтобы увеличить напряжение необходимо к этой секции добавить еще одну, выключив первый контактор и включив второй. Но в этом случае ТЭД на определенный период времени оказался бы отключенным от сети, и наш электровоз двигался бы рывками.

Можно эту процедуру сделать и по-другому: не отключать наш первый контактор, включить контактор второй и после этого выключить первый контактор. Но и это не есть хорошо – на некоторое время вторая секция обмотки окажется замкнутой накоротко, что конечно, недопустимо. В связи с этим секции трансформатора переключаются с использованием таких устройств, как переходные реакторы.

Читайте также:  Электрический ток газа доклад

Сглаживающий (переходной) реактор электровоза

Сглаживающий (переходной) реактор электровоза

В начальном положении начало и конец реактора подключаются к одному выводу трансформатора. Для увеличения напряжения один вывод реактора отсоединяют от первоначального вывода и присоединяют к другому, замыкая тем самым уже большую секцию на переходной реактор. В этом порядке происходят последующие переключение секций трансформатора.

Переходной реактор используется и для увеличения ступеней регулирования напряжения, для этого к каждому выводу обмотки трансформатора подсоединяют два контактора. Но при таком регулировании напряжения контакторы разрывают и замыкают силовые цепи под током. Для этого устанавливаются дополнительные контакторы с дугогашением, а они в свою очередь включаясь и выключаясь в определенной последовательности обеспечивают переключение остальных контакторов при обесточенной цепи.

Чтобы увеличить число ступеней регулирования напряжения на ТЭД при ограниченном числе выводов трансформатора вторичная обмотка делится на две обмотки: нерегулируемую и регулируемую. С 1 по 17 позиции контроллера обе эти обмотки включены встречно. С 17 по 33 позиции для дальнейшего увеличения напряжения обмотки включены согласованно.

электрический контроллер главный (ЭКГ8Ж)

электрический контроллер главный (ЭКГ8Ж)

Переключения обмоток и секций контакторами с дугогашением и без дугогашения производятся строго в определенной последовательности. Это осуществляется электрическим контроллером главным (ЭКГ8Ж). ЭКГ имеет 30 кулачковых контакторов без дугогашения и четыре с дугогашением (имеют схемное обозначение А; Б; В; Г), кулачковые валы и серводвигатель (сервомотор) – вращающий валы в обоих направлениях.

электрический контроллер главный (ЭКГ8Ж)

электрический контроллер главный (ЭКГ8Ж)

Сервомотор посредством зубчатых колес, червячного зацепления, зубчатой передачи и так называемого мальтийского механизма (мальтийский крест) приводит во вращение кулачковый вал четырех контакторов с дугогашением (А; Б; В; Г) и через зубчатую передачу посредством второго мальтийского креста кулачковые валы контакторов переключения обмоток и ступеней. Данные валы связываются зубчатой передачей, которая обеспечивает необходимую последовательность переключения секций и обмоток.

Производить перегруппировку ТЭД на переменниках не требуется, все электродвигатели соединены параллельно. ЭКГ8Ж имеет электрообогрев, на его валу установлен лимб с нанесенными на нем позициями и стрелка, указывающая, на какой позиции находятся валы ЭКГ. Это делается для того, чтобы валы можно было скручивать вручную, так как ЭКГ8Ж страдает таким «недугом», как застревание валов ЭКГ при наборе или сбросе позиций в автоматическом режиме или «заскакиванием» за нулевую позицию, после чего схема тяги разберется (сработает ГВ), вот и приходится опускать токоприемник, «рассштариваться», входить в ВВК и скручивать валы вручную специальным ключом.

кабина электровоза эп1

» data-medium-file=»https://i.dvizhenie24.ru/2019/07/4-300×225.jpg» data-large-file=»https://i.dvizhenie24.ru/2019/07/4.jpg» width=»600″ height=»450″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2019/07/4.jpg» alt=»кабина электровоза эп1″ data-srcset=»https://i.dvizhenie24.ru/2019/07/4.jpg 600w, https://i.dvizhenie24.ru/2019/07/4-300×225.jpg 300w» data-sizes=»(max-width: 600px) 100vw, 600px»/> Контроллер машиниста

Управляется вся эта система контроллером машиниста, расположенным в кабине рядом с пультом управления по левую руку от машиниста. В отличие от довольно громоздких контроллеров электровозов постоянного тока, данный контроллер имеет небольшие размеры. На нем установлены две рукоятки – главная и реостатная, На одном валу с главной находится и реверсивная рукоятка, которая вставляется в специальное гнездо над главной рукояткой. Реверсивная рукоятка небольшая, вынимается из своего гнезда и переносится, так сказать, в кармане. Когда реверсивная рукоятка вынута, то главная рукоятка заблокирована и не сдвинется с места, это сделано специально, чтобы предотвратить несанкционированное управление электровозом.

Главная рукоятка имеет положения:

  • БВ – быстрое выключение (если необходимо немедленно отключить силовую схему); 0;
  • АВ – автоматическое выключение (сброс позиций в авторежиме);
  • РВ – ручное выключение (сброс позиций в ручном режиме);
  • ФВ – фиксация выключения (подготовка к сбросу позиций);
  • ФП – фиксация пуска (подготовка к набору позиций);
  • РП – ручной пуск (набор позиций в ручном режиме);
  • АП – автоматический пуск (набор позиций в автоматическом режиме).

После постановки рукоятки в положение РП происходит набор ровно одной позиции, после чего рукоятка возвращается в положение ФП. После постановки рукоятки в положение РВ происходит сброс ровно одной позиции ЭКГ, после чего рукоятку возвращают в положение ФВ. Обычно, при движении с уже набранным количеством позиций рукоятку ставят в положение ФВ.

Расположенная сверху рукоятка реверсивная имеет направление вперед и назад, при положении вперед рукояткой подключается ослабление поля: имеющее три ступени: ОП1; ОП2 и ОП3. Рукоятка управления реостатом имеет положения: П – подготовка; ПТ – предварительное торможение; Т – торможение, в этом режиме вращением рукоятки можно задавать необходимую скорость состава, в режиме реостатного торможения. Тормозная сила устанавливается специальным переключателем, установленным на крышке контроллера. Главный контроллер имеет 33 позиции, из них, каждая пятая (5; 9; 13; 17; 21; 25; 29 и 33) являются ходовыми, остальные используются для переключения. Позиции указываются указателем позиций (сельсин), установленным на приборной доске, когда ЭКГ «встает» на ходовую позицию, то на пульте также загораются сигнальные лампочки зеленого цвета, каждая на свою секцию (1; 2; 3 и 4).

Источник

Грузовые электровозы переменного тока

Проблемы с содержанием статьи

Грузовые отечественные электровозы переменного тока серийного производства выполнены на напряжение 25 кВ, частотой 50 Гц, двойного питания — на напряжение 25 и 3 кВ соответственно переменного и постоянного тока. Электровозы имеют коллекторные тяговые двигатели пульсирующего тока, индивидуальный привод и опорно — осевое подвешивание тяговых двигателей как со ступенчатым, так и с плавным бесконтактным регулированием напряжения. Выпускаются в 6-, 8- и 12-осном исполнениях.

Читайте также:  Пропуск в ток судак

Расход материалов на изготовление электровоза переменного тока распределяется примерно так: черных металлов примерно 80%, цветных металлов 10%, неметаллических материалов 10%.

За срок службы (33 года) каждый грузовой электровоз переменного тока проходит в среднем следующее кол-во ремонтов: КР-2 — 2, КР-1 — 6, ТР-3 — 9, ТР-2 — 18, ТР-1 — 468.

Норматив годовых затрат на ремонт и техническое обслуживание составляет в среднем 5,52 % инвентарной стоимости электровозов.

Удельная трудоемкость деповского ремонта на 1 млн. км пробега составляет для электровозов ВЛ60к 21,3 и для ВЛ80 всех индексов — 29,1 тыс. чел-ч. Удельный расход электроэнергии на полигоне железных дорог, где эксплуатируется электроподвижной состав только переменного тока, в грузовом движении в 2000 году составил по показаниям электровозных счетчиков 108,6 кВт-ч на 10 т-км брутто.

Для электровозов различных серий в зависимости от условий работы удельный расход энергии на шинах подстанции находился в пределах 91…132 кВт-ч на 100 000 т-км брутто. Техническая скорость электровозов в грузовом движении равна 45,5 км/ч (2000 г.).

Применение на электровозах переменного рекуперативного торможения позволяет снизить удельный расход электроэнергии на тягу поездов: для электровозов ВЛ80 на 10…12 %, для электровозов ВЛ85 на 15…17 % по сравнению с электровозами без рекуперативного торможения. Возврат электроэнергии при рекуперации в реальных условиях эксплуатации в среднем составляет 10-15% потребляемой в режиме тяги. При электрическом торможении расход тормозных колодок уменьшается на 15-20% на измеритель работы: 1 кВт возвращаемой электроэнергии или поглощаемой в тормозных резисторах эквивалентен массе 50 г ( по износу ) тормозных колодок.

Плавное тиристорное регулирование напряжения тяговых двигателей повышает силу тяги электровоза по сцеплению примерно на 8 % по сравнению с электровозами со ступенчатым регулированием или дает возможность получить соответствующую экономию в расходе песка. Тиристорное регулирование напряжения, особенно в режиме рекуперативного торможения, вызывает понижение коэффициента мощности, в связи с чем применяются компенсирующие установки.

Электровозы постоянного тока

С1931—1932 Соединённые Штаты Америки | СС1932—1934 Союз Советских Социалистических Республик | С И 1933—1934 Королевство Италия (1861—1946) | ВЛ191932—1938 Союз Советских Социалистических Республик | ПБ211934 Союз Советских Социалистических Республик | СК1936—1938 Союз Советских Социалистических Республик | ВЛ221938—1941 Союз Советских Социалистических Республик | ВЛ22 М 1947—1958 Союз Советских Социалистических Республик | ВЛ81953—1967 Союз Советских Социалистических Республик | ВЛ231956—1961 Союз Советских Социалистических Республик | ЧС11957—1960 Чехословакия | ЧС21958—1973 Чехословакия | ЭО1959 Германская Демократическая Республика | ЧС31961 Чехословакия | ВЛ101961—1977 Союз Советских Социалистических Республик | ЧС2 Т 1972—1976 Чехословакия | ВЛ121973, 1974 Союз Советских Социалистических Республик | ЧС2001974—1979 Чехословакия | ВЛ111975—. Союз Советских Социалистических Республик | ЧС61979—1981 Чехословакия | ЧС71983—2000 Чехословакия | ВЛ151984—1991 Союз Советских Социалистических Республик | ДЭ11995—2008 Украина | ЭП2К2006—… Россия | 2ЭС4К2006—… Россия | 2ЭС62007—… Россия | 2ЭЛ42009—… Украина | 2ЭС102010—… Россия

Электровозы переменного тока

ОР221938 Союз Советских Социалистических Республик | ВЛ611954—1957 Союз Советских Социалистических Республик | ВЛ601957—1967 Союз Советских Социалистических Республик | Ф1959—1960 Франция | К1961, 1962 Федеративная Республика Германии (до 1990) | ВЛ60П1961 Союз Советских Социалистических Республик | ВЛ801961—1994 Союз Советских Социалистических Республик | ВЛ621962—1963 Союз Советских Социалистических Республик | ЧС41965—1972 Чехословакия | ВЛ401966, 1969 Союз Советских Социалистических Республик | Sr11971 Союз Советских Социалистических Республик | ЧС4 Т 1971—1986 Чехословакия | ВЛ811976 Союз Советских Социалистических Республик | ВЛ831976 Союз Советских Социалистических Республик | ВЛ841979 Союз Советских Социалистических Республик | ЧС81983—1989 Чехословакия | ВЛ851983—1994 Союз Советских Социалистических Республик | ВЛ86 Ф 1985 Союз Советских Социалистических Республик | ВЛ651992—1998 Россия | ЭП11998—… Россия | ЭП2001997 Россия | ДС32002— Украина | Э5К2004—… Россия | KZ4A2004—2010 Китайская Народная Республика | O’Z-Y2009—2010 Китайская Народная Республика | ВЛ40У2004—… Украина | 2ЭЛ52005—… Украина | 2ЭС52011—… Россия

Электровозы двойного типа питания

ЧС51966 Чехословакия | ВЛ821966—1979 Союз Советских Социалистических Республик | ЭП102005—2006 Россия | ЭП202010-… Россия

ВЛ411963—1964 Союз Советских Социалистических Республик | ЭГМ1964 Союз Советских Социалистических Республик | ВЛ261966—1967 Союз Советских Социалистических Республик

ЭП1931—1938 Союз Советских Социалистических Республик | В1933 Королевство Италия (1861—1946) | СО (V-КП-2)1936—1940 Союз Советских Социалистических Республик | IV-КП1949—1956 Германия / Союз Советских Социалистических Республик | II-КП41952—1956 Союз Советских Социалистических Республик | 21Е1956—1962 Чехословакия | 26Е1961-1965 Чехословакия | ЕЛ11957—1971 Германия | ЕЛ21957—1967 Германия | ЕЛ211981—1986 Германия | Э11977 Союз Советских Социалистических Республик | Э21980 Союз Советских Социалистических Республик | ЭК141975-… Союз Советских Социалистических Республик

Узкоколейные электровозы

ЧС111966 Чехословакия | ПЭУ11970-1984 Союз Советских Социалистических Республик | ПЭУ21988 Союз Советских Социалистических Республик | К-101971-… Союз Советских Социалистических Республик Россия

Источник

Тема электровозы переменного тока

12.5. Особенности устройства электровозов переменного тока

От контактной сети переменного тока электровоз получает однофазный ток промышленной частоты 50 Гц, номинального напряжения 25000 В. Электрическое оборудование такого электровоза отличается от оборудования электровоза постоянного тока главным образом наличием понижающего трансформатора (рис. 12.20, а) и выпрямительной установки.

Трансформаторы выполняют с интенсивным циркуляционным масло-воздушным охлаждением. Принцип работы такого охлаждения показан на рис. 12.20, б.

В качестве выпрямителей обычно применяют кремниевые полупроводниковые вентили — диоды, а в последнее время также силовые кремниевые вентили—тиристоры, которые позволяют управлять процессом токопрохождения.

Выпрямленное напряжение на зажимах тяговых электродвигателей не является постоянным во времени, а пульсирует; пульсация напряжения вызывает пульсацию выпрямленного тока. Значительная пульсация неблагоприятно влияет на работу тяговых электродвигателей, поэтому в их цепь включают дополнительные индуктивности — так называемые сглаживающие реакторы.

На электровозах ВЛ80к и ВЛ80т применяется электродвигатель с двусторонней передачей и независимой вентиляцией.

Скорость электровоза переменного тока регулируется изменением напряжения, подводимого к тяговым электродвигателям, путем подключения их к различным выводам вторичной обмотки трансформатора или выводам автотрансформаторной обмотки. При таком способе регулирования отпадает надобность в пусковых реостатах и в переключениях двигателей. На электровозах переменного тока тяговые электродвигатели все время соединены между собой параллельно. Это улучшает тяговые свойства электровоза и упрощает электрическую схему. Расположение оборудования в кузове электровоза переменного тока показано на рис. 12.21.

Применение переменного тока при электрификации железных дорог вызвало необходимость организации пунктов стыкования двух родов тока: однофазного напряжением 25000 В и постоянного напряжением 3000 В. При этом станции стыкования оборудуются специальными устройствами для переключения напряжения в отдельных секциях контактной сети. Хотя при таком стыковании локомотивы сменяются быстро, однако, усложняется и удорожается устройство контактной сети, кроме того, затрудняется работа станции.

Читайте также:  Генератором стабильного тока схема транзистор

В ряде случаев целесообразно применение электровозов двойного питания, у которых возможны необходимые переключения электрического оборудования для работы на участках постоянного и переменного тока. К электровозам двойного питания относят-ся электровозы ВЛ82 и ВЛ82м соответственно мощностью 5600 и 6040 кВт с конструкционной скоростью 110 км/ч.

Рис. 12.20. Общий вид трансформатора электровоза (а) и схема его охлаждения (б): 1 — бак; 2 — маслоохладитель; 3 — воздухопровод; 4 — выводы вторичной обмотки; 5 — расширитель для масла; 6, 8 — кронштейны установки контроллера; 7 — ввод первичной обмотки; 9 — электронасос прокачки масла; 10 — маслопроводы; 11 — пробка; 12 — трубки охладителя

Рис. 12.21. Расположение основного оборудования на кузове электровоза переменного тока:
1 — пульт управления; 2 — кабина машиниста: 3 — токоприемник; 4 — аппараты управления: 5, 7 — выпрямительные установки; 6—трансформатор с
переключателем ступеней; 8 — блок системы охлаждения; 9—распределительный щит; 10 — мотор-компрессор; 11 — межсекционное соединение

Источник



Электровозы переменного тока

Опубликовано 26.07.2019 · Обновлено 04.02.2021

А как устроен и работает электровоз переменного тока? Данный локомотив использует для питания переменный однофазный ток, напряжением 25 000 Вольт. В этой машине переменный ток проходит этап выпрямления, т.е., через выпрямительные установки преобразуется в постоянный и поступает на тяговые электродвигатели. Но, ток в выпрямительных установках электровоза не сглаженный, практически не постоянный, как на электровозах постоянного тока, а пульсирующий. Поэтому на них установлены тяговые электродвигатели (ТЭД) пульсирующего тока. Это практически коллекторные ТЭД постоянного тока, но имеющие дополнительные устройства – шихтованные вставки, дополнительные полюса, большее число полюсов и компенсационную обмотку.

Электровоз ЭП1М

Электровоз ЭП1М

Электровозы переменного тока устроены посложнее, имеют в своем устройстве больше оборудования, у них значительно выше сцепной вес. На крыше расположены: токоприемник; электропневматический главный выключатель (ГВ) – предназначен для подключения силовой цепи электровоза к контактному проводу и ее автоматического отключения от сети в случае ненормальной работы (короткие замыкания и перегрузки); жалюзи вентиляторов; главные резервуары пневматической системы.

Тяговый электродвигатель

Тяговый электродвигатель

В кузове находятся: тяговый трансформатор; выпрямительные установки или выпрямительно-инверторные преобразователи (ВИП); переходный и сглаживающие реакторы (дополнительно сглаживают пульсации тока); мотор-вентиляторы-охлаждают выпрямительные установки и тяговые электродвигатели, выпрямительные установки возбуждения (используются при реостатном и рекуперативном торможении),

Мотор-вентилятор

Мотор-вентилятор

количество вентиляторов больше, чем на «постоянниках» от трех и выше (обычно четыре); мотор-компрессор (для закачивания сжатого воздуха в главные резервуары пневматической системы); реверсоры (для смены направления движения); фазорасщепитель – переменный ток поступающий на электровоз однофазный, а вспомогательные машины (двигатели вентиляторов и компрессора асинхронные трехфазные), вот фазорасщепитель и преобразует однофазный ток в трехфазный; на старых типах электровозов – электрический контроллер главный (ЭКГ8Ж) ; контакторы цепей управления; вспомогательный компрессор (для аварийного подъема токоприемника) и другое вспомогательное оборудование. Аккумуляторные батареи находятся под кузовом. Цепи управления питаются постоянным током, напряжением 50 Вольт, вырабатываемым генератором постоянного тока или специальным трансформатором (ТРПШ).

мотор-компрессор

Мотор-компрессор

Все электровозы оборудованы системой подачи песка под колесные пары, эта система используется для предотвращения буксования колесных пар, поэтому в кузове установлены еще и бункеры для сухого песка.

Трансформатор

Трансформатор

Как мы знаем из курса физики – трансформатор способен повышать или понижать напряжение переменного тока. В электровозах он понижает напряжение до значения наиболее благоприятного для работы ТЭД (900-1600 Вольт). Регулирование на отечественных электровозах осуществляется на стороне низшего напряжения, путем подключения секций обмотки трансформатора контакторами и соответственно увеличения или уменьшения напряжения на тяговых электродвигателях. Регулирование на стороне высшего напряжения тягового трансформатора применено на электровозах ЧС4 и ЧС8.

Весь этот процесс осуществляется контроллером машиниста, посредством цепей управления, через электрический контроллер главный – он состоит из четырех силовых контакторов с дугогашением и тридцати контакторов без дугогашения. Контакторы с дугогашением переключают в определенной последовательности секции обмотки трансформатора под током, обеспечивая переключение остальных контакторов при обесточенной цепи. Для недопущения возникновения токов короткого замыкания при переключении контакторов в цепи установлен переходный реактор, он еще позволяет увеличить число ступеней регулирования напряжения.
Весь этот контроллер имеет кулачковый вал, приводимый во вращение электродвигателем постоянного тока-сервомотором, через редуктор и специальную муфту. Но это все уже устарело, хотя электровозы с данной системой регулированию еще вовсю работают на железных дорогах.

Выпрямительно-инверторные преобразователи (ВИП)

Выпрямительно-инверторные преобразователи (ВИП)

Все современные электровозы работают на полупроводниках – тиристорах. На них устанавливаются выпрямительно-инверторные преобразователи (ВИП). Управление выпрямителями, собранными на тиристорах, позволяет осуществить не только преобразование переменного тока в постоянный, но и плавное регулирование напряжения на ТЭД. Также ВИП позволяет инвертировать постоянный ток в переменный при рекуперативном торможении. Как говорится – три в одном! В данном выпрямителе можно устанавливать угол включения (открытия) тиристоров, то есть подавать в соответствующие моменты управляющие импульсы тока. При этом регулируется среднее значение напряжения от обмотки трансформатора. Очень перспективная и надежная система.

Источник