Меню

Тепловая мощность двигателя это

Тепловой режим и номинальная мощность двигателя

Тепловой режим и номинальная мощность двигателя При работе электродвигателя возникают потери , на покрытие которых расходуется часть потребляемой им электрической энергии. Потери возникают в активном сопротивлении обмоток, в стали при изменении магнитного потока в магнитопроводе, а также механические потери на трение в подшипниках и трение о воздух вращающихся частей машины. В конечном итоге вся энергия потерь превращается в тепловую энергию, идущую на нагрев двигателя и рассеивающуюся в окружающей среде.

Потери в двигателе бывают постоянные и переменные. К постоянным относятся потери в стали и механические и потери в обмотках, где ток постоянен, к переменным — потери в обмотках двигателя.

В начальный период после включения большая часть выделяющегося в двигателе тепла идет на повышение его температуры, а меньшая поступает в окружающую среду. Затем по мере увеличения температуры двигателя все большее количество тепла передается в окружающую среду, и наступает момент, когда все выделяемое тепло рассеивается в пространстве. Тогда наступает тепловое равновесие, и дальнейшее повышение температуры двигателя прекращается. Такая температура нагрева двигателя называется установившейся. Установившаяся температура с течением времени остается постоянной, если нагрузка двигателя не изменяется.

Количество тепла Q, которое выделяется в двигателе за 1 с, можно определить по формуле

где η — КПД двигателя; Р2— мощность на валу двигателя.

Из формулы следует, что чем больше нагрузки двигателя, тем больше тепла в нем выделяется и тем выше его установившаяся температура.

Тепловой режим и номинальная мощность двигателя Опыт эксплуатации электродвигателей показывает, что основной причиной их выхода из строя является перегрев обмотки. Пока температура изоляции не превышает допустимого значения, тепловой износ изоляции нарастает очень медленно. Но по мере превышения температуры износ изоляции резко возрастает. Практически считают, что перегрев изоляции на каждые 8°С снижает срок ее службы вдвое. Так, двигатель с хлопчатобумажной изоляцией обмоток при номинальной нагрузке и температуре нагрева до 105 °С может работать около 15 лет, при перегрузке и повышении температуры до 145 °С двигатель выйдет из строя уже через 1,5 месяца.

По ГОСТ изоляционные материалы, используемые в электромашиностроении, по нагревостойкости делятся на семь классов, для каждого из которых устанавливается максимально допустимая температура (табл. 1).

Допустимое превышение температуры обмотки двигателя над температурой окружающей среды (в СССР принято + 35 °С) для класса нагревостойкости Y составляет 55 °С, для класса А — 70° С, для класса В — 95° С, для класса Я—145° С, для класса G более 155 °С. Превышение температуры данного двигателя зависит от величины его нагрузки и режима работы. При температуре окружающей среды ниже 35 °С двигатель можно нагрузить выше его номинальной мощности, но так, чтобы при этом температура нагрева изоляции не превышала допустимые нормы.

Характеристика материала Класс нагревостойкости Предельно допустимая температура, °С
Непропитанные хлопчатобумажные ткани, пряжа, бумага и волокнистые материалы из целлюлозы и шелка Y 90
Те же материалы, но пропитанные связующими А 105
Некоторые синтетические органические пленки Е 120
Материалы из слюды, асбеста и стекловолокна, содержащие органические связующие вещества В 130
Те же материалы в сочетании с синтетическими связующими и пропитывающими веществами F 155
Те же материалы, но в сочетании с кремний органическими связующими и пропитывающими составами Н 180
Слюда, керамические материалы, стекло, кварц, асбест, применяемые без связующих составов или с неорганическими связующими составами G более 180
Читайте также:  Мощность физической нагрузки при беге

Исходя из известного количества тепла Q , выделенного при работе двигателя, можно подсчитать превышение температуры двигателя τ °С над температурой окружающей среды, т. е. температуру перегрева

где А — теплоотдача двигателя, Дж/град•с; е —основание натуральных логарифмов (е = 2,718); С — теплоемкость двигателя, Дж/град; τ о — начальное превышение температуры двигателя при τ .

Установившаяся температура двигателя τу может быть получена из предыдущего выражения, если принять τ = ∞ . Тогда τу = Q / А . При τо = 0 равенство (2) примет вид

Обозначим отношение С/А через Т, тогда

где Т — постоянная времени нагрева, с.

Постоянная нагрева — это время, в течение которого двигатель нагрелся бы до установившейся температуры при отсутствии теплоотдачи в окружающую среду. При наличии теплоотдачи температура нагрева будет меньше и равна

Постоянная времени может быть найдена графически (рис.1, а). Для этого из начала координат проводят касательную ОС до пересечения с горизонтальной прямой, проходящей через точку а, соответствующую температуре установившегося нагрева. Отрезок вс будет равен Т, а отрезок ав — времени t у, в течение которого двигатель достигнет установившейся температуры τу . Обычно принимают равным 4T.

Постоянная нагрева зависит от номинальной мощности двигателя, частоты его вращения, конструкции и способа охлаждения, но не зависит от величины его нагрузки.

Кривые нагрева и охлаждения двигателя

Рис. 1. Кривые нагрева и охлаждения двигателя: а — графическое определение постоянной нагрева; б — кривые нагрева при различных нагрузках

Если двигатель, после того как он нагреется, отключить от сети, то, начиная с этого момента, он уже не выделяет тепла, а накопленное тепло продолжает рассеиваться в окружающей среде, двигатель охлаждается.

Уравнение охлаждения имеет вид

а кривая показана на рис. 1, а.

В выражении То — постоянная времени охлаждения. Она отличается от постоянной времени нагрева Т, так как теплоотдача двигателя, находящегося в покое, отличается от теплоотдачи работающего двигателя. Равенство возможно в том случае, когда двигатель, отключенный от сети, имеет постороннюю вентиляцию. Тепловой режим и номинальная мощность двигателя Обычно кривая охлаждения идет более полого, чем кривая нагрева. У двигателей с внешним обдувом То больше Т примерно в 2 раза. Практически можно считать, что через промежуток времени от 3То до 5То температура двигателя становится равной температуре окружающей среды.

При правильном выборе номинальной мощности двигателя установившаяся температура перегрева должна быть равна допустимому превышению температуры τдоп , соответствующему классу изоляции обмоточного провода. Различным нагрузкам P1

Исходя из изложенного можно дать следующее определение номинальной мощности двигателя. Номинальная мощность двигателя представляет собой мощность на валу, при которой температура его обмотки превышает температуру окружающей среды на величину, соответствующую принятым нормам перегрева.

Источник



§ 5.11. Тепловые двигатели

Большая часть двигателей на Земле — это тепловые двигатели, т. е. устройства, превращающие внутреннюю энергию топлива в механическую энергию.

Необратимость процессов в природе налагает определенные ограничения на возможность использования внутренней энергии для совершения работы тепловыми двигателями. Это прямо отражено во втором законе термодинамики в формулировке Кельвина (см. § 5.9).

Простейшая модель тепловой машины

Простейшую тепловую машину можно собрать из стакана с водой, капли анилина и горелки (рис. 5.14). Так как сосуд с водой подогревается снизу, то температура воды Т2 в верхних слоях, естественно, ниже, чем температура Т1 внизу.

Плотность анилина и плотность воды по-разному зависят от температуры. При Т1 плотность анилина меньше плотности воды, а при Т2 больше. Если влить холодный анилин в воду, то он опустится на дно. После нагревания плотность анилина уменьшается и он всплывает. У поверхности вследствие охлаждения плотность анилина станет больше плотности воды, и капля вновь опустится на дно. Затем весь цикл повторится.

Читайте также:  Что такое мгновенное значение мощности

При каждом цикле совершается положительная работа по преодолению трения при движении капли в воде. Если каплю внизу «нагружать», а вверху «разгружать», то такая тепловая машина может быть использована для подъема груза.

Если покрыть стакан стеклянной пластинкой, то температура верхних слоев воды увеличится и машина перестанет работать.

В нашей простейшей машине происходят процессы, общие для всех тепловых двигателей. Машина получает от нагревателя (горелки) количество теплоты Q1 и передает холодильнику (в данном случае атмосфере) количество теплоты Q2. За счет того, что Q1 > Q2, и совершается работа.

Принципы действия тепловых двигателей

Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 называют температурой нагревателя.

Роль холодильника

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2. Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.

Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q1, совершает работу А’ и передает холодильнику количество теплоты |Q2| 10 кВт. Когда эта мощность достигнет 3 • 10 12 кВт, то средняя температура атмосферы Земли повысится примерно на 1 °С. Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц — сажи, пепла, измельченного топлива. Они изменяют оптические свойства атмосферы, соотношение между поглощенной и отраженной солнечной энергией, увеличивают «парниковый эффект», обусловленный повышением концентрации углекислого газа в течение длительного промежутка времени. Углекислый газ задерживает тепловое излучение Земли, что приводит к повышению температуры атмосферы.

Выбрасываемые в атмосферу токсические продукты горения: оксиды серы, азота, металлов, угарный газ (СО), канцерогенные вещества — продукты неполного сгорания органических топлив — оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.

Читайте также:  Если ползунок реостата переместить вправо то мощность

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Осуществляется перевод автомобильных двигателей на сжиженный газ в качестве топлива. Обсуждается возможность применения в качестве топлива водорода, в результате сгорания которого образуется вода.

Другое направление прилагаемых усилий — это увеличение эффективности использования энергии, экономия ее на производстве и в быту. Нельзя оставлять невыключенными электроприборы, допускать бесполезные потери топлива при обогревании помещений. Примером нерационального использования энергии служат попытки введения в эксплуатацию гражданских сверхзвуковых самолетов, потребляющих в 8 раз больше топлива, чем обычные.

Решение перечисленных проблем жизненно важно для человека. Организация охраны окружающей среды требует усилий в масштабе земного шара.

Большую часть механической и электрической энергии вырабатывают тепловые двигатели. Пока равноценной замены им нет. В то же время тепловые двигатели оказывают отрицательное влияние на окружающую среду и условия существования человека на Земле.

Источник

Тепловой двигатель. Коэффициент полезного действия теплового двигателя.

Согласно закону сохранения энергии, работа, совершаемая двигателем, равна:

где Q, — количество теплоты, полученное от нагревателя. Q 2 — количество теплоты, отданное холодильнику.

рабо­ты A’, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η T 1 – T 2 = 0 двигатель не может работать.

Цикл Карно — это круговой обратимый процесс, состоящий из двух адиабатических процессов.

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес­сы цикла. В процессе изотермического расширения (1-2) при температуре T 1, работа совершается за счет измене­ния внутренней энергии нагревателя, т. е. за счет подве­дения к газу количества теплоты Q:

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе ( Q = 0) полностью преобразуется в механическую работу:

Температура газа в результате адиабатического рас­ширения (2-3) понижается до температуры холодильни­ка T 2 T 1. В процессе (3-4) газ изотермически сжимает­ся, передавая холодильнику количество теплоты Q 2:

Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1.

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Источник