Меню

Тиристорный выпрямитель сварочного тока

Диодно-тиристорный выпрямитель со схемой управления для сварочного аппарата

В различных изданиях попадались публикации на данную тему, но положительного результата добиться не удавалось. Дело в том, что если просто подключить к трансформатору диодный или диодно-тиристорный выпрямитель, на выходе получается напряжение с пульсацией 100 Гц. При сварке электродом для постоянного тока это достаточно много. В результате дуга нестабильна и постоянно срывается. Не помогает и установка в разрыв вторичной цепи сглаживающего дросселя. Но когда сварочный аппарат стоит в холодном гараже или под навесом на улице, где температура воздуха зимой опускается до -15. -25°С, и необходимо срочно что-то приварить, достаточно сложное электронное устройство начинает давать сбои.

Поэтому была собрана более простая схема выпрямителя, которая неплохо показала себя даже в зимний период.

Содержание / Contents

↑ Схема

Устройство (рис.1) состоит из сварочного трансформатора (промышленного или самодельного), диодно-тиристорного выпрямителя со схемой управления, сглаживающего конденсатора С1 и дросселя L1.

Фактически — это простой регулятор мощности. Так как питание схемы управления стабилизировано, установленное значение сварочного тока поддерживается довольно стабильно. Из-за наличия в схеме фильтрующих элементов С1 и L1, пульсаций напряжения на выходе практически нет. Дуга держится надежно, и качество шва получается высоким. Схема управления — это фазоимпульсный генератор на аналоге однопереходного транзистора, собранный на двух транзисторах разной проводимости. Питается от вторичной обмотки сварочного трансформатора Т1 через диодный мост VD1 и стабилизатор, образованный стабилитронами VD2, VD3. Их можно заменить одним на соответствующее напряжение стабилизации. Резистор R1 ограничивает ток, протекающий через стабилитроны. В зависимости разных выходных напряжений сварочных трансформаторов приходится подбирать R1 для оптимального тока стабилизации стабилитронов VD2, VD3 и устойчивой работы фазоимпульсного генератора.
Переменным резистором R2 производится регулировка сварочного тока. Он изменяет время заряда конденсатора С1 до напряжения открывания ключа на транзисторах VT1 и VT2.
При желании расширить диапазон регулировки тока (в меньшую сторону), увеличивается сопротивление R2 до 100 kOm. Управление мощными тиристорами VS1, VS2 , производится с помощью
маломощных VS3 и VS4, которые, в свою очередь, запускаются генератором через импульсный трансформатор T2.

↑ Конструкция и детали

В моем варианте выпрямитель с регулятором выполнен отдельным блоком и присоединяется к сварочному аппарату гибкими перемычками примерно 0,5 м длиной. Это более удобно, так как не надо переделывать уже готовый сварочный аппарат, к тому же, можно варить как постоянным, так и переменным током. При таком исполнении выпрямительный блок можно подключать к любому сварочному трансформатору. Диоды и тиристоры установлены на отдельных ребристых радиаторах (рис.2).

Все соединительные перемычки выполнены многожильным медным проводом с контактными клеммами на концах под болтовое соединение. Электронная схема управления выполнена на печатной плате (рис.3), хотя и объемный монтаж, собранный качественно, ничуть не хуже.

Импульсный трансформатор Т2 — марок ТИ-3; ТИ-4; ТИ-5, с коэффициентом трансформации 1:1:1. Его можно намотать самому на ферритовом кольце, например, 32x20x6 МН2000. Все обмотки содержат по 100. 150 витков медного обмоточного провода марки ПЭВ, ПЭЛШО 0,25. 0,3 мм. Перед намоткой сердечник необходимо обмотать слоем лакоткани. Конденсатор С1 набран из 4 конденсаторов по 15000 мкФ с рабочим напряжением не менее 80В. Так как при замыкании и размыкании сварочной цепи и при горящей дуге токи подпитки, протекающие через конденсаторы, очень велики, то соединять конденсаторы необходимо по схеме «звезда» (от одной соединительной клеммы идут 4 провода на вывод «+» каждого конденсатора, и от второй клеммы — также 4 провода на вывод «-» конденсаторов). Сечение каждого провода выбрано таким, чтобы суммарное сечение всех 4 проводов было не меньше сечения питающих силовых кабелей.

При недоборе емкости кондесатора С1, 44000 мкф (два импортных по 22000 мкф на 90 в,) при работе аппарата кондесаторы греются от увеличенных токов (заряд-розряд), при четырех импортных по 22000 мкф на 90 в, при очень длительной работе в режиме сварки немного теплые. Практика показала, что С1 лучше работает из большего количества кондесаторов меньшей емкости.

Дроссель намотан на сердечнике площадью 20. 30см2, с немагнитным зазором 0,5. 1 мм. Количество витков может быть от 25 до 60. 80. Чем больше витков, тем лучше, но ухудшается отвод тепла от внутренних слоев обмотки. Провод для намотки должен иметь сечение, не меньшее площади сечения провода, которым намотана вторичная обмотка трансформатора. Это касается и всех перемычек, которыми сделаны соединения силового блока.

Сварочный ток может достигать 100. 180А, в зависимости от мощности сварочного трансформатора. Это надо учитывать при монтаже.
При болтовом соединении надо соблюдать правило: сварочный ток не должен протекать через болт, если, конечно, он не медный или латунный. Это в основном касается входных и выходных клемм. Один из вариантов, как можно сделать, показан на рис.4.

Корпус выпрямителя желательно изготовить из негорючего материала, но можно даже из фанеры, если позволяет объем и отступить подальше от нагревающихся радиаторов.
В корпусе обязательны вентиляционные отверстия. Ручка регулятора тока устанавливается на корпусе, и вокруг наносится шкала с делениями — для более удобной установки тока. Для удобства регулировки рабочего тока я установил контрольную лампочку накаливания 110 в минимальной мощности по степени которой я ориентировался при установке тока сварки. В качестве предохранителя в первичной цепи трансформатора используется автомат на соответствующий рабочий ток.
Вентилятор для принудительного охлаждения необходимо использовать с достаточно приличной по размерам крыльчаткой. Все это создает условия для безопасной, более надежной работы устройства.

P.S. Приношу свои извинения за низкое качество снимков. Они пересняты телефоном (Nokia N73) со старых распечаток струйника.
Нет возможности сделать новые фото с аппарата так как он продан.

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Тиристорные и транзисторные выпрямители

Фазовое регулирование режима в тиристорном выпрямителе

Фазовое регулирование заключается в изменении угла управления тиристоров, приводящем к изменению части напряжения трансформатора, подаваемого тиристорным выпрямительным блоком на нагрузку.

Фазовое регулирование обладает всеми достоинствами электрического регулирования: компактность и высокая надежность бесконтактных органов управления, плавность и высокая кратность регулирования напряжения, простота дистанционного и программного управления.

Главный недостаток фазового регулирования заключается в значительной пульсации выпрямленного напряжения. При a>60″ в кривой выпрямленного напряжения появляются разрывы. Более того, даже в интервале 0

Приемы снижения пульсации напряжения и тока приведены на схемах, используемых в серийных тиристорных выпрямителях (рис. 1). Обычно с этой целью устанавливают сглаживающий дроссель L, иногда с обратным диодом VD (рис. 1,а). В те моменты, когда мгновенное значение выпрямленного напряжения уменьшается, сварочный ток поддерживается энергией, запасенной дросселем в предыдущий промежуток времени. Обратный диод особенно полезен при глубоком регулировании (a > 60″), поскольку позволяет дpосселю поддеpживать ток iд2 в моменты, когда тиpистоpы не пpопускают ток iд1. В pезультате кpивая тока сглаживается. Для пpактически полного сглаживания тока во всем интеpвале pегулиpования a от 0 до 90″ необходимо, чтобы сопротивление дросселя XL = wL было существенно выше сопротивления нагрузки — дуги (wL > 5Rд). Такой мощный дроссель слишком дорог и велик, к тому же чрезмерно замедляет переходные процессы при зажигании дуги и переносе электродного металла. Поэтому индуктивность назначают на уровне L = 0,2 — 0,5 мГн только из соображения уменьшения разбрызгивания, не стремясь к полному сглаживанию кривой тока. Обычно применяется дроссель с воздушным зазором на 2 — 3 ступени (рис. 1,б).


Рис. 1. Упрощённые схемы тиристорных выпрямителей:
а- с трёхфазной мостовой;
б- с шестифазной с уравнительным дросселем;
в- с кольцевой схемой выпрямления.

Для снижения пульсации напряжения разумно также ограничивать глубину фазового регулирования,например до a = 60″. Чтобы кратность регулирования напряжения при этом не снизилась, фазовое регулирование дополняют ступенчатым, например, изменяя соединение обмоток трансформатора. На рис. 4.7,б переключатель S показан в положении, обеспечивающем соединение первичных обмоток в звезду, что дает низший диапазон регулирования сварочного напряжения. При другом положении переключателя обмотки соединяются треугольником, и выпрямленное напряжение увеличивается в 1,73 раза.

Наконец, устойчивое горение дуги при глубоком фазовом регулировании достигается введением блока подпитки (рис. 1,в). Блок представляет собой вспомогательный маломощный выпрямитель, состоящий из трансформатора Т2 с увеличенным рассеянием и блока неуправляемых вентилей VD. Его ток заполняет паузы в кривой тока основного источника.

Формирование внешних характеристик в тиристорном выпрямителе

Необходимые(жесткие или крутопадающие) внешние характеристики в тиристорном выпрямителе могут быть сформированы как естественным, так и искусственным способом.

Естественные внешние характеристики имеют наклон, зависящий от сопротивления трансформатора.

Необходимый тип естественной внешней характеристики тиристорного выпрямителя задается конструкцией трансформатора. Жесткие характеристики получаются при использовании трансформатора с нормальным рассеянием, крутопадающие —трансформатора с увеличенным рассеянием.

Читайте также:  Какое действие оказывает ток в организме человека

Искусственные внешние характеристики формируются за счет обратных связей. В этом случае выпрямитель нужно представить как замкнутую систему автоматического регулирования тока или напряжения На приведенной функциональной схеме толстой линией вы-делены элементы, обязательные для любого тиристорного выпрямителя. В силовой части схемы напряжение сети преобразуется трансформатором с нормальным рассеянием и после выпрямления тиристорным блоком и сглаживания фильтром подается на дугу. В слаботочной части блок задания БЗ формирует сигнал задания тока Uзт или напряжения Uзн , а блок фазового управления БФУ передает его к тиристорному блоку, формируя импульсы управления. Для создания системы автоматического регулирования с цепями обратных связей необходимы, кроме того, датчики выпрямленного напряжения и тока, датчик сетевого напряжения, а также блок сравнения БС сигнала задания с сигналом датчика. В конкретной конструкции может быть как одна из показанных пунктирной линией обратных связей, так и несколько.

Блок-схема тиристорного выпрямителя с обратными связями

Рис. 2. Блок-схема тиристорного выпрямителя с обратными связями

Искусственные внешние характеристики в тиристорном выпрямителе получаются благодаря обратным связям по напряжению или току. Стабилизация напряжения при жестких внешних характеристиках достигается введением отрицательной обратной связи по сварочному или сетевому напряжению. Крутопадающую характеристику обеспечивает ведение отрицательной обратной связи по току.

Выпрямитель с тиристорным выпрямительным блоком

Выше было показано, что на основе одной и той же силовой части тиристорного выпрямителя с помощью слаботочных цепей управления можно сформировать и жесткие, и крутопадающие характеристики. Поэтому большинство тиристорных выпрямителей разработаны как универсальные.

Универсальный выпрямитель ВДУ-505 (рис. 3) имеет в своем составе автоматический выключатель QF, пускатель K, силовой трансформатор T, уравнительный дpоссель L1, силовой блок тиристоров V1, линейный дроссель L2, а также не показанные на схеме вентилятор и цепи управления. Силовой понижающий трансформатор имеет нормальное рассеяние, что позволяет применять его при формировании как жестких, так и крутопадающих характеристик. Силовой выпрямительный блок собран из тиристоров T-160-3 по шести фазной схеме с уравнительным дpосселем, которая обеспечивает самую низкую токовую загрузку вентилей.

Выпрямитель ВДУ-505 У3: а- упрощённая принципиальная схема

Рис. 3. Выпрямитель ВДУ-505 У3: а- упрощённая принципиальная схема;
б- падающие; в- жёсткие внешние характеристики

Линейный дроссель L2 предназначен для сглаживания выпрямленного тока, а при сварке в углекислом газе также для уменьшения разбрызгивания. При ручной сварке с крутопадающими характеристиками дроссель имеет максимальную индуктивность — 0,5мГн. При механизированной сварке в углекислом газе с жесткими характеристиками его индуктивность меняется автоматически в зависимости от режима сварки следующим образом. При низких режимах наблюдается значительная пульсация выпрямленного тока, протекающего по рабочей обмотке ОР дросселя. Поэтому в обмотке управления ОУ индуктируются большие ЭДС и ток, замыкающийся по вентилямV2, V3 и дуге. Этот ток создает с помощью обмотки управления большой магнитный поток, сильно насыщающий железо дросселя. Поэтому при низких режимах дроссель имеет малую индуктивность, при высоких — большую индуктивность.

Дроссель с управляемой индуктивностью изменяет характер переходных процессов при сварке в углекислом газе, существенно снижая разбрызгивание электродного металла.Процесс короткого замыкания каплей корректируется на всех трех этапах. В начале короткого замыкания дроссель L2 имеет максимальную индуктивность (около 0,5мГн), поэтому ток нарастает сравнительно медленно, не препятствуя слиянию капли с ванной. На втором этапе вступает в действие обмотка управления ОУ, в которойвозникает большая ЭДС, индуктированная всплеском тока в рабочей обмотке ОР. При этом тиристор V3 открывается, а V2— закрывается. Ток, протекающий по тиристоруV3 и обмотке ОУ, создает магнитный поток, насыщающий сердечник дросселя и резко снижающий его индуктивное сопротивление. Поэтому ток короткого замыкания на втором этапе нарастает быстрей, вызывая сбрасывание капли в ванну. Третий этап начинается со спада тока, который вызовет смену знака ЭДС обмотки ОУ. По этой причине закрывается тиристор V3, а V2 — открывается. При этом ЭДС обмотки ОУ будет подпитывать дугу, не допуская резкого провала сварочного тока после короткого замыкания, что способствует повышению устойчивости процесса, особенно при низких режимах.

Система управления выпрямителя, собранная на интегральных микросхемах, показана на функциональной схеме (см. рис. 2). Для получения крутопадающих характеристик (рис. 3,б) используется отрицательная обратная связь по току, одновременно с ней действует обратная связь по напряжению сети, что позволяет стабилизировать ток при колебаниях сетевого напряжения. При сварке с жесткими характеристиками (рис. 3,в) стабилизация напряжения обеспечивается обратными связями по сварочному и сетевому напряжению. Для получения небольшого заданного наклона характеристик используется также ослабленная обратная связь по току. При отсутствии сварочного тока обратная связь по сварочному напряжению отключена и тиристоры переходят к полнофазному включению (a = 0″), что обеспечивает высокое напряжение холостого хода при сварке на жестких характеристиках. В результате улучшается зажигание дуги и устойчивость при малых токах.

Другие выпрямители отличаются от ВДУ-505 конструктивным оформлением, схемой выпрямления, типом вентилей и способом сглаживания тока и напряжения. Одинаковую с ВДУ-505 схему имеют выпрямители ВДУ-506 и ВДУ-507. Ранее выпускался выпрямитель ВДУ-504 (см. рис. 1,б). В отличие от ВДУ-505 он имел два диапазона регулирования напряжения при соединении первичных обмоток в звезду или треугольник, линейный дроссель на две ступени индуктивности и схему управления на дискретных полупроводниковых элементах. Небольшие отличия имеются в конструкциях других универсальных выпрямителей. Выпрямитель ВДУ-306, кроме жесткой и крутопадающей характеристики, имеет еще и комбинированную характеристику—жесткую в диапазоне больших токов и крутопадающую (ри от -0,1 до -0,2 В/А) при малых токах. Это повышает эластичность дуги при малых токах, что особенно важно при выполнении вертикальных швов. Выпрямитель ВДГ-401 предназначен для механизированной сварки в углекислом газе и имеет только жесткие характеристики. Выпрямитель ВДУ-602 предназначен для комплектации двух режимного полуавтомата и позволяет дистанционно с пульта автомата включать тот или иной из двух заранее настроенных режимов. Выпрямитель ВДУ-1201, предназначенный для механизированной сварки в углекислом газе и под флюсом, имеет шести фазную кольцевую схему выпрямления, собранную из таблеточных тиристоров Т-500.

Технико-экономические показатели тиристорных выпрямителей лучше, чем у диодных. Так, коэффициен тполезного действия при номинальном режиме составляет около 0,7 — 0,85, а коэффициент мощности—0,6—0,65. При жестких характеристиках оба показателя выше,чем при крутопадающих. Удельный расход электроэнергии при ручной дуговой сварке составляет 4 — 5,5 кВт·ч на 1 кг расплавленного металла.

Выпрямитель с тиристорным регулятором в первичной цепи

Для выпрямителей на токи более 1000 А рациональна установка ти-ристорного регулятора в первичной цепи трансформатора подобно тому, как это было выполнено в конструкции тиристорного трансформатора. При этом снижается коммутируемый тиристорами ток, что позволяет использовать маломощные массовые тиристоры без их параллельного соединения.

Рассмотрим конструкцию мощного выпрямителя ВДУ-1604, предназначенного для механизированной сварки под флюсом и в углекислом газе.Первичные обмотки силового трансформатора T соединены треугольником, в каждую фазу включено по два тиристора, соединенных встречно-параллельно. Тиристорный блок VS используется для регулирования режима и формирования необходимой внешней характеристики. Функция выпрямления тока передана диодному блоку VD,включенному в цепь вторичных обмоток по кольцевой схеме. Кремниевые диоды изготавливают на большие токи, и их использование в мощном выпрямителе не встречает затруднений. Кольцевая схема их соединения требует сравнительно простого и экономичного трансформатора. В цепи выпрямленного тока установлен сглаживающий дроссель L из четырех секций. В диапазоне малых токов используют две последовательно соединенные секции с общей индуктивностью 0,5 мГн, при большом сварочном токе используют три параллельно соединенных секции с общей индуктивностью 0,07 мГн.

Тип внешней характеристики зависит от положения переключателя S. При первом положении в блок сравнения БС проходит только сигнал отрицательной обратной связи по току ОСТ, в этом случае формируются крутопадающие характеристики с наклоном от -0,02до -0,2 В/А. Во втором положении переключателя действуют оба сигнала обратной связи—по току ОСТ и напряжению ОСН, при этом пологопадающие внешние характеристики имеют наклон от 0,011 до-0,015 В/А. В третьем положении действует только обратная связь по напряжению,что приводит к формированию стабилизированных (жестких) характеристик с наклоном от -0,006 до -0,009 В/А. Схемой управления предусмотрено также форcирование режима в начале сварки. С этой целью зажигание дуги происходит при максимальном токе благодаря полно фазному включению тиристоров (a = 0). При появлении сварочного тока сигнал о начале сварки СНС с дросселя L поступает в блок сравнения БС, в результате чего форсирование прекращается.

В составе выпрямителя имеются также автоматический выключатель, вентилятор, приборы контроля и сигнализации. Схемой предусмотрена возможность параллельного соединения двух выпрямителей для получения тока до 3000 А с настройкой режима на одном из них.

Подобную конструкцию имеет и выпрямитель ВДУ-1202, однако в нем используется шести фазная нулевая схема соединения диодов и более простой сглаживающий дроссель.

Выпрямитель с транзисторным регулятором

Транзисторный регулятор, как правило, устанавливается в цепи постоянного, т.е. сварочного тока. Чаще всего в качестве такого регулятора используется силовой транзистор,включенный по схеме с общим эмиттером (ОЭ). При недостаточной мощности одиночного транзистора используют несколько параллельно соединенных транзисторов или транзисторных модулей, т.е. конструктивно и схемно оформленных устройств. Обычно транзистор работает в режиме ключа, т.е. при достаточной величине тока базы почти мгновенно из состояния отсечки переводится в состояние насыщения. Ключевой режим принят потому, что в отличие от режима усилителя потери энергии на транзисторе при этом минимальны, что гарантирует высокий КПДи сравнительно малый нагрев транзистора. Используются как биполярные, так и полевые транзисторы. Биполярные транзисторы имеют большую номенклатуру, лучше освоены и дешевле в производстве. Полевые МДП-транзисторы имеют больший КПД и более высокое быстродействие.

Читайте также:  Штука из зажигалки бьющая током


Рис. 4. Принципиальная схема (а) и осцилограммы при частотном (б)
и широтном (в) регулировании транзисторного источника

Регулирование напряжения выполняется частотно-импульсным (рис. 4,б) и широтно-импульсным (рис. 4,в) способами. Если при постоянной длительности включенного состояния транзистора tт увеличить частоту его включений (рис. 4,б), это вызовет сокращение интервала работы дросселя на разрядку tод и, следовательно, увеличение среднего напряжения на выходе источника Uи.

При широтном регулировании частота включения транзистора f, так же как и период следования импульсов T = 1 / f, остается постоянной.В этом случае при увеличении длительности включенного состояния транзистора tт напряжение источника Uи возрастает (рис.4,в).

Частотное регулирование технически проще осуществимо, при широтном регулировании меньше пульсации тока и выше быстродействие системы управления. Транзисторные источники наибольшее распространение нашли в составе установок для специальных способов сварки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

СВАРОЧНЫЙ АППАРАТ

СВАРОЧНЫЙ АППАРАТ

Недавно беседовал со своим преподавателем в университете, и на свою беду раскрыл свои радиолюбительские таланты. В общем кончился разговор тем, что взялся я собрать человеку тиристорный выпрямитель с плавным регулятором тока, для его сварочного «бублика». Зачем это нужно? Дело в том, что переменным напряжением нельзя варить со специальными электродами, рассчитанными на постоянку, а учитывая что сварочные электроды бывают разной толщины (чаще всего от 2 до 6 мм), то и значение тока должно быть пропорционально изменено.

 Сварочный аппарат на испытании лампой

Выбирая схему сварочного регулятора, последовал совету -igRomana- и остановился на довольно простом регуляторе, где изменение тока производится подачей на управляющие электроды импульсов, формируемых аналогом мощного динистора, собранного на тиристоре КУ201 и стабилитроне КС156. Смотрим схему ниже:

Несмотря на то, что потребовалась дополнительная обмотка с напряжением 30 В, решил сделать проще, и чтоб не трогать сам сварочный трансформатор поставил небольшой дополнительный на 40 ватт. Тем самым приставка-регулятор стала полностью автономной — можно её подключать к любому сварочному трансформатору. Остальные детали регулятора тока собрал на небольшой плате из фольгированного текстолита, размерами с пачку сигарет.

разработка платы регулятора Сварочного аппарата

Выбор деталей в Сварочный аппарат

Пайка платы регулятора

Плата регулятора готова

В качестве основания выбрал кусок винипласта, куда прикрутил сами тиристоры ТС160 с радиаторами. Так как мощных диодов под рукой не оказалось, пришлось два тиристора заставить выполнять их функцию.

Основание для Сварочного аппарата

Болты крепления М12 для тиристоров

Прикручиваем тиристоры на винипласт

Блок тиристоров ТС160 для выпрямителя

Тиристоры в Сварочный аппарат

Она так-же крепится на общее основание. Для ввода сети 220 В использованы клеммы, входное напряжение со сварочного трансформатора подаётся на тиристоры через винты М12. Снимаем постоянный сварочный ток с таких-же винтов.

Самодельный Сварочный аппарат

Сварочный аппарат собран, пришло время испытаний. Подаём на регулятор переменку с тора и меряем напряжение на выходе — оно почти не меняется. И не должно, так как для точного контроля вольтажа нужна хотя-бы небольшая нагрузка. Ей может быть простая лампа накаливания на 127 (или 220 В). Вот теперь и без всяких тестеров видно изменение яркости накала лампы, в зависимости от положения движка резистора-регулятора.

Проверка регулятора Сварочного аппарата

Вот и понятно, зачем по схеме указан второй подстроечный резистор — он ограничивает максимальное значение тока, что подаётся на формирователь импульсов. Без него выходной уже от половины движка достигает предельно возможного значения, что делает регулировку недостаточно плавной.

Плата регулятора тока

Для правильной настройки диапазона изменения тока, надо основной регулятор вывести на максимум тока (минимум сопротивления), а подстроечным (100 Ом) постепенно снижать сопротивление, пока дальнейшее его уменьшение не приведёт к увеличению сварочного тока. Зафиксировать этот момент.

Тестирование Сварочника

Дополнительный трансформатор регулятора

Теперь сами испытания, так сказать по железу. Как и было задумано, ток нормально регулируется от нуля до максимума, однако на выходе не постоянка, а скорее импульсный постоянный ток. Короче электрод постоянного тока как не варил, так и не варит как следует.

Трансформатор 630 ватт для предварительной проверки

Придётся добавлять блок конденсаторов. Для этого нашлось 5 штук отличных электролитов на 2200 мкФ 100 В. Соединив их с помощью двух медных полосок параллельно, получил вот такую батарею.

Конденсаторы в Сварочный аппарат

Проводим опять испытания — электрод постоянного тока вроде начал варить, но обнаружился нехороший дефект: в момент касания электрода, происходит микровзрыв и прилипание — это разряжаются конденсаторы. Очевидно без дросселя не обойтись.

Блок конденсаторов в выпрямитель

И тут удача не оставила нас с преподавателем — в каптёрке нашёлся просто отличный дроссель ДР-1С, намотанный медной шиной 2х4 мм по Ш-железу и имеющий вес 16 кг.

дроссель ДР-1С

Готовый сварочный аппарат постоянного тока

Совсем другое дело! Теперь залипания почти нет и электрод постоянного тока варит плавно и качественно. А в момент контакта идёт не микровзрыв, а типа лёгкое шипение. Короче все довольны — учитель отличным сварочным аппаратом, а я избавлением от забивания головы архимутным предметом, не имеющим никакого отношения к электронике:)

Источник



Схема тиристорного регулятора больших выпрямленных токов

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Схема выпрямителя на четырех силовых вентилях

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» — от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь — самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.

Схема регулятора тока на тиристорах

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод — при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров — чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Читайте также:  Индуктивность l замкнутого проводящего контура определяется формулой ток в контуре

Схемы регулируемого выпрямителя полностью на тиристорах

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым — в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Тиристорный мост для регулировки тока в широком диапазоне

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Принципиальная схема блока управления тиристорами

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Диаграмма импульсов

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:

  • меньшее сопротивление R4 — большая крутизна — Е1;
  • большее сопротивление R4 — меньшая крутизна — Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 — раньше появляется импульс — F1;
  • большее сопротивление R4 — позже появляется импульс — F2.

Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды — H1, большему — меньшая часть полупериода синусоиды — H2 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Схема автоматического двухпредельного вольтметра

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» — пороги переключения элементов стабильны.

Конструкция и налаживание

Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения — приходится менее чувствительный отбраковывать).

Измерять напряжение на нагрузке можно каждый раз «подходящим» вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).

Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.

Для «загрубления» шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.

Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:

  • размыкают подстроечное сопротивление R1 — схема вольтметра переключается на высоковольтный предел;
  • вместо зеленого светодиода HL2 включается красный светодиод HL1.

Красный, более заметный, цвет специально выбран для шкалы больших напряжений.

Внимание! Подстройка R1(шкала 0. 300) производится после подстройки R2.

Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.

Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.

Сопротивление лампы оптрона равно сотням ом, а фоторезистора — мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 — на отдельных радиаторах.

Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.

Вид устройства сверху

Рис. 8. Вид устройства сверху.

На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа — шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи «300 В».

Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.

Вид на лицевую панель устройства

Рис. 9. Вид на лицевую панель устройства.

Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.

Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).

Необходимо между точками «D» и «E» блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12. 13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).

Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного «подзаряженным» аккумулятором вместе с автоматическим пусковым устройством.

Автоматизация режима запуска двигателя автомобиля

Рис. 10 . Автоматизация режима запуска двигателя автомобиля.

По мере увеличения бортового напряжения автоматика «закрывает» подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.

Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.

Источник