Меню

Ток электродвигателя при заклинивании

Защита электродвигателей от перегрузки

Перегрузка электродвигателей возникает

· при затянувшемся пуске и самозапуске,

· при перегрузке приводимых механизмов,

· при понижении напряжения на выводах двигателя.

· при обрыве фазы.

Для электродвигателя опасны только устойчивые перегрузки. Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковременны и самоликвидируются при достижении нормальной частоты вращения.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6…2,5) Iном. Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой самого механизма. Основной опасностью сверхтоков является сопровождающее их повышение температуры отдельных частей, и в первую очередь, обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы двигателя. Перегрузочная способность электродвигателя определяется характеристикой зависимости между сверхтоком и допускаемым временем его прохождения:

где t – допустимая длительность перегрузки, с;

А – коэффициент, зависящий от типа изоляции электродвигателя, а также периодичности и характера сверхтоков; для обычных двигателей А = 150-250;

К – кратность сверхтока, т. е. отношение тока электродвигателя Iдк Iном.

Вид перегрузочной характеристики при постоянной времени нагрева T = 300 с представлен на рис. 20.2.

При решении вопроса об установке РЗ от перегрузки и характере ее действия руководствуются условиями работы электродвигателя, имея в виду возможность устойчивой перегрузки его приводного механизма:

а. На электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, РЗ от перегрузки может не устанавливаться. Однако, ее установка целесообразна на двигателях объектов, не имеющих постоянного обслуживающего персонала, учитывая опасность перегрузки двигателя при пониженном напряжении питания или неполнофазном режиме;

Рис. 20.2. Характеристика зависимости допустимой длительности перегрузки от кратности тока перегрузки

б. На электродвигателях, подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, насосов и т.п.), а также на электродвигателях, самозапуск которых не обеспечивается, должна устанавливаться РЗ от перегрузки;

в. Защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без останова электродвигателя;

г. Защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть устранена с механизма автоматически или вручную персоналом без останова механизма, и электродвигатели находятся под наблюдением персонала;

д. На электродвигателях механизмов, которые могут иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без останова механизма, целесообразно предусматривать действие РЗ от сверхтоков с меньшей выдержкой времени на отключение электродвигателя; в тех случаях, когда ответственные электродвигатели собственных нужд электростанций находятся под постоянным наблюдением дежурного персонала, защиту их от перегрузки можно выполнить с действием на сигнал.

Защита электродвигателей, подверженных технологическойперегрузке, желательно иметь такой, чтобы она, с одной стороны, защищала от недопустимых перегрузок, а с другой – давала возможность наиболее полно использовать перегрузочную характеристику электродвигателя с учетом предшествовавшей нагрузки и температуры окружающей среды. Наилучшей характеристикой РЗ от сверхтоков являлась бы такая, которая проходила несколько ниже перегрузочной характеристики (пунктирная кривая на рис. 20.2).

20.4. Защита от перегрузки с тепловым реле. Лучше других могут обеспечить характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Q, выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина состоящая из спаянных по всей поверхности металлов а и б с сильно различающимися коэффициентами линейного расширения. При нагревании пластина прогибается в сторону металла с меньшим коэффициентом расширения и замыкает контакты реле.

Нагревание пластины осуществляется нагревательным элементом при прохождении по нему тока.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам электродвигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и электродвигателя. Поэтому тепловые реле применяются в редких случаях, обычно в магнитных пускателях и автоматах 0,4 кВ.

20.5. Защита от перегрузки с токовыми реле. Для защиты электродвигателей от перегрузки обычно применяются МТЗ с использованием реле с ограниченно зависимыми характеристиками типа РТ-80 или МТЗ с независимыми токовыми реле и реле времени.

Преимуществами МТЗ по сравнению с тепловыми являются более простая их эксплуатация и более легкий подбор и регулировка характеристик РЗ. Однако, МТЗ не позволяют использовать перегрузочные возможности электродвигателей из-за недостаточного времени действия их при малых кратностях тока.

МТЗ с независимой выдержкой времени в однорелейном исполнении обычно применяется на всех асинхронных электродвигателях собственных нужд электростанций, а на промышленных предприятиях — для всех синхронных (когда она совмещена с РЗ от асинхронного режима) и асинхронных электродвигателей, являющихся приводами ответственных механизмов, а также для неответственных асинхронных электродвигателей с временем пуска более 12…13 с.

Релейная защита от перегрузки с зависимой выдержкой времени лучше согласовываются с тепловой характеристикой двигателя, однако, и они недостаточно используют перегрузочную способность двигателей в области малых токов.

Защита от перегрузки с зависимой характеристикой выдержки времени может быть выполнена на реле типа РТ-80 или цифровом реле.

Ток срабатывания защиты от перегрузки устанавливается из условия отстройки от Iномэлектродвигателя:

где котс – коэффициент отстройки, принимается равным 1,05.

Читайте также:  Что в физике означает сила тока

Время действия МТЗ от перегрузки t3Пдолжно быть таким, чтобы оно было больше времени пуска электродвигателя tпуск, а у электродвигателей, участвующих в самозапуске, больше времени самозапуска.

Время пуска асинхронных электродвигателей обычно составляет 8…15 с. Поэтому характеристика реле с зависимой характеристикой должна иметь при пусковом токе время, не меньшее 12…15 с. На РЗ от перегрузки с независимой характеристикой выдержка времени принимается 14…20 с.

20.6. Защита от перегрузки с тепловой характеристикой выдержки времени на цифровом реле. В цифровое реле защиты двигателя, например, типа MiCOM Р220 заложена тепловая модель двигателя из составляющих прямой и обратной последовательности тока, потребляемого двигателем таким образом, чтобы учесть тепловое воздействие тока в статоре и роторе. Составляющая обратной последовательности токов, протекающих в статоре, наводит в роторе токи значительной амплитуды, которые создают существенное повышение температуры в обмотке ротора. Результатом сложения, проведенного MiCOM Р220 является эквивалентный тепловой ток Iэкв, отображающий повышение температуры, вызванное током двигателя. Ток Iэкввычисляется в соответствии с зависимостью:

Кэ– коэффициент усиление влияния тока обратной последовательности учитывает повышенное воздействие тока обратной последовательности по сравнению с прямой последовательности на нагрев двигателя. При отсутствии необходимых данных принимается равным 4 — для отечественных двигателей и 6 – для зарубежных.

Дополнительные функции реле MiCOM P220, связанные с тепловой перегрузкой двигателяследующие.

· Запрет отключения от тепловой перегрузки при пуске двигателя.

· Cигнализация тепловой перегрузки.

Заклинивание ротора двигателя может произойти при пуске двигателя или в процессе его работы.

Функция заклинивание ротора при работающем двигателе вводится автоматически при его успешном развороте после истечения заданной выдержки времени.

В цифровых реле Sepam 2000 защита двигателя от затяжного пуска и заклинивания ротора выполнена иначе. Первая защита срабатывает и отключает двигатель, если ток двигателя от начала процесса пуска превышает значение 3Iном в течение заданного времени t1 = 2tпуска. Начало пуска обнаруживается в момент увеличения потребляемого тока от 0 до значения 5% номинального тока. Вторая защита срабатывает, если пуск завершен, двигатель работает нормально, и в установившемся режиме неожиданно ток двигателя достигает значения более 3Iном и держится в течение заданного времени t2 = 3-4с.

Несимметрия. Защита двигателя от перегрузки токами обратной последовательности защищает двигатель от подачи напряжения с обратным чередованием фаз, от обрыва фазы, от работы при длительной несимметрии напряжений.

При подаче на двигатель напряжения с обратным чередованием фаз двигатель начинает вращаться в обратную сторону, приводимый в действие механизм может быть заклинен или вращаться с моментом сопротивления, отличающимся от момента прямого вращения. Таким образом, величина тока обратной последовательности двигателя может колебаться в широких пределах. При обрыве фазы двигатель уменьшает вращающий момент в 2 раза и для компенсации у него в 1,5. 2 раза увеличивается ток.

При несимметрии питающих напряжений ток обратной последовательности может иметь различную величину до самых малых значений. Появление тока обратной последовательности более всего влияет на нагрев ротора двигателя, где он наводит токи двойной частоты. Таким образом, целесообразно иметь защиту по I2, которая отключала бы двигатель для предотвращения его перегрева.

Защита имеет 2 ступени:

Ступень Iобр> с независимой выдержкой времени. Ток срабатывания принимается равным (0,2…0,25)Iномдвигателя. Выдержка времени должна обеспечить отключение несимметричных коротких замыканий в прилегающей сети, для чего она должна быть на ступень больше, чем защита питающего трансформатора:

Ступень Iобр>>сзависимой характеристикой выдержки времениможет быть использована для повышения чувствительности защиты, если известны реальные тепловые характеристики двигателя по току обратной последовательности.

Потеря нагрузки. Функция позволяет обнаружить расцепление двигателя с приводимым им в движение механизмом вследствие обрыва муфты, ленты транспортера, выпуск воды из насоса и т.д. по уменьшению рабочего тока двигателя.

Уставка минимального тока:

где Iхх– ток холостого хода двигателя с механизмом определяется при испытаниях.

Выдержка времени минимального тока двигателя tI

Источник

Виды электрической защиты асинхронных электродвигателей

Двигатели трехфазного переменного тока напряжением до 500 в при мощностях от 0,05 до 350 – 400 кВт являются наиболее распространенным видом электродвигателей.

Надежная и бесперебойная работа электродвигателей обеспечивается в первую очередь надлежащим выбором их по номинальной мощности, режиму работы и форме исполнения. Не меньшее значение имеет также соблюдение необходимых требований и правил при составлении электрической схемы, выборе пускорегулирующей аппаратуры, проводов и кабелей, монтаже и эксплуатации электропривода.

Аварийные режимы работы электродвигателей

Даже для правильно спроектированных и эксплуатируемых электроприводов при их работе всегда остается вероятность появления режимов, аварийных или ненормальных для двигателя и другого электрооборудования.

К аварийным режимам относятся:

1. Короткие замыкания

Короткие замыкания являются наиболее опасными аварийными режимами в электроустановках. В большинстве случаев они возникают из-за пробоя или перекрытия изоляции. Токи короткого замыкания иногда достигают величин, в десятки и сотни раз превосходящих значения токов нормального режима, а их тепловое воздействие и динамические усилия, которым подвергаются токоведущие части, могут привести к повреждению всей электроустановки;

2. тепловые перегрузки электродвигателя из-за прохождения по его обмоткам повышенных токов:

Тепловые перегрузки вызывают в первую очередь ускоренное старение и разрушение изоляции двигателя, что приводит к коротким замыканиям, т.е. к серьезной аварии и преждевременному выходу двигателя из строя.

Виды защиты асинхронных электродвигателей

Для того чтобы защитить электродвигатель от повреждений при нарушении нормальных условий работы, а также своевременно отключить неисправный двигатель от сети, предотвратив или ограничив тем самым развитие аварии, предусматриваются средства защиты.

Главным и наиболее действенным средством является электрическая защита двигателей, выполняемая в соответствии с «Правилами устройства электроустановок» (ПУЭ).

Читайте также:  Генератор переменного тока синоним

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей.

Защита асинхронных электродвигателей от коротких замыканий

Защита от коротких замыканий отключает двигатель при появлении в его силовой (главной) цепи или в цепи управления токов короткого замыкания.

Аппараты, осуществляющие защиту от коротких замыканий (плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем), действуют практически мгновенно, т. е. без выдержки времени.

Защита асинхронных электродвигателей от перегрузки

Защита от перегрузки предохраняет двигатель от недопустимого перегрева, в частности и при сравнительно небольших по величине, но продолжительных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (температурные и тепловые реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, — и мгновенно.

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита асинхронных электродвигателей от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя.

В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты асинхронных электродвигателей

Защита асинхронных электродвигателей от понижения или исчезновения напряженияВыбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей – четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

Популярные товары

Источник

Ток электродвигателя при заклинивании

Группа: Участники форума
Сообщений: 193
Регистрация: 23.7.2010
Пользователь №: 65886

Добрый день, любители и профессионалы электропривода!

К концу дня плохо соображаю. Никак не могу понять, почему если двигатель клинит, то ток увеличивается свыше номинального. Как физически можно обьяснить этот процес?

LordN

Просмотр профиля

Группа: Модераторы
Сообщений: 10031
Регистрация: 3.7.2004
Из: Томск
Пользователь №: 32

and

Просмотр профиля

Группа: Участники форума
Сообщений: 1479
Регистрация: 10.5.2011
Из: Гатчина
Пользователь №: 107121

Если ротор неподвижен, то мотор потребляет пусковой, а не рабочий ток.
На статор не наводится противоЭДС ротора и не снижает ток до рабочего (номинального).
PS
А уже ответили.

Сообщение отредактировал and — 4.4.2013, 18:20

AAL1982

Источник



Выбор типа защиты электродвигателей

Выбор типа защиты электродвигателейВ процессе эксплуатации различных электроустановок возникают аварийные режимы. Основные из них — короткие замыкания, технологические перегрузки, неполнофазные режимы, заклинивание ротора электрической машины.

Аварийные режимы работы электродвигателей

Под коротким замыканием понимается режим, когда ток перегрузки превышает номинальный в несколько раз. Перегрузочный режим характеризуется превышением тока в 1,5 — 1,8 раза. Технологические перегрузки приводят к увеличению температуры обмоток электродвигателя выше допустимой, постепенному разрушению ее и выходу из строя.

Читайте также:  Что больше ток эмиттера или ток инжекции основных носителей

Неполнофазный режим (потеря фазы) возникает в случае перегорания предохранителя в фазе, обрыва провода, нарушения контакта. При этом происходит перераспределение токов, по обмоткам электродвигателя начинают протекать повышенные токи, не исключается остановка механизма и выход электрической машины из строя. Наиболее чувствительны к неполнофазным режимам электродвигатели малой и средней мощности, т. е., которые наиболее часто используются в промышленности и сельском хозяйстве.

Заклинивание ротора электрической машины может возникнуть при разрушении подшипника, заклинивании рабочей машины. Это наиболее тяжелый режим. Скорость нарастания температуры обмотки статора достигает 7 — 10 °С в секунду, через 10 — 15 с температура двигателя выходит за допустимые пределы. Наиболее опасен такой режим для двигателей малой и средней мощности.

Наибольшее количество аварийных выходов из строя электродвигателей обусловлено технологическими перегрузками, заклиниванием, разрушением подшипникового узла . До 15 % отказов происходит из-за обрыва фаз и возникновения недопустимой несимметрии напряжений.

плавкие предохранители

Виды электрических аппаратов для защиты электродвигателей

Для защиты электрооборудования от аварийных режимов серийно выпускаются автоматические выключатели, предохранители, тепловые реле, устройства встроенной температурной защиты, фазочувствительная защита и другие аппараты.

При выборе типа защиты учитываются конкретные условия эксплуатации, быстродействие, надежность, удобство эксплуатации, экономические показатели.

В электроустановках до 1000 В защита от коротких замыканий обычно осуществляется плавкими предохранителями или электромагнитными расцепителями максимального тока, встроенными в автоматические выключатели .

автоматические выключатели

Помимо этого, защита от коротких замыканий электродвигателей может осуществляться токовым реле , включенным в одну из фаз статора непосредственно или через трансформатор тока и реле времени.

Защиту от перегрузок подразделяют на два типа: защиту прямого действия, реагирующую на превышение тока, и защиту косвенного действия, реагирующую на превышение температуры. Наиболее распространенным типом токовой защиты, используемой для защиты электродвигателей от перегрузок (в том числе и от заклинивания), являются тепловые релеле . Они выпускаются серии ТРН, ТРП, РТТ, РТЛ. Трехфазные тепловые реле РТТ и РТЛ защищают также от обрыва фазы.

тепловое реле

Фазочувствительная защита (ФУЗ) защищает от обрыва фазы, заклинивания механизма, коротких замыканий, пониженного сопротивления изоляции электродвигателя.

Защита от перегрузок и заклинивания механизма может осуществляться также с помощью специальных предохранительных муфт . Указанный тип защиты используется на прессовом оборудовании. Для защиты от обрыва фаз серийно выпускаются реле обрыва фаз типа Е-511, ЕЛ-8, ЕЛ-10, современные электронные и микропроцессорные реле.

реле ЕЛ-10

К защите косвенного действия относится и встроенная температурная защита УВТЗ , реагирующая не на значение тока, а на температуру обмотки электродвигателя, независимо от причины, вызвавшей нагрев. В настоящее время, для этих целей все чаще используются современные электронные и микропроцессорные тепловые реле, реагирующие на изменение сопротивления встроенных в обмотку статора электродвигателя терморезисторов.

Порядок выбора типа защиты для электродвигателей

При выборе типа защиты необходимо руководствоваться следующими положениями:

наиболее ответственные электроприемники, отказ в работе которых может привести к большому ущербу, подверженные систематическому загрязнению, или работающие в условиях повышенной температуры, а также с резкопеременной нагрузкой (дробилки, пилорамы, измельчители кормов) целесообразно защищать встроенной температурной защитой и автоматическими выключателями или предохранителями.

Защита маломощных электродвигателей (до 1,1 кВт), которые обслуживаются высококвалифицированным персоналом, может осуществляться тепловыми реле и предохранителями.

Защиту электродвигателей средней мощности (более 1,1 кВт), работающих без обслуживающего персонала, рекомендуется защищать фазочувствительными устройствами.

Указанные рекомендации основываются на результатах анализа работы аппаратов защиты в условиях аварийных режимов. При этом установлены следующие особенности функционирования защитных устройств.

При небольших перегрузках и длительных режимах работы надежно работают тепловые реле, фазочувствительная защита, встроенная температурная защита. Выбор предпочтительного аппарата в этом случае необходимо производить с учетом экономических показателей. При переменных нагрузках с периодом колебаний нагрузки, соизмеримым с постоянной нагрева двигателя, тепловые реле действуют ненадежно и следует применять встроенную температурную защиту или фазочувствительную защиту. При случайных нагрузках большей надежностью обладают защитные устройства, действующие в функции температуры, а не тока.

При включении электропривода в неполнофазную сеть по его обмоткам проходит ток, близкий к пусковому, и защитные аппараты срабатывают надежно. Но если обрыв фазы произошел после включения электродвигателя, то сила тока зависит от нагрузки. Тепловые реле в этом случае обладают значительной зоной нечувствительности и лучше применять фазочувствительную защиту и встроенную температурную защиту.

УВТЗ

При затяжных пусках применение тепловых реле нежелательно. Если пуск осуществляется при пониженном напряжении, тепловое реле может ложно отключить электродвигатель.

При заклинивании ротора электродвигателя или рабочей машины ток в его обмотках в 5 — 6 раз превышает номинальный. Тепловые реле в этой ситуации должны в течение 1 — 2 с отключить электродвигатель. Однако температурная защита при перегрузках по току в 1,6 раза и выше имеет большую динамическую погрешность, поэтому электродвигатель может быть не отключен, возникнет недопустимый перегрев обмоток и резкое сокращение срока службы электрической машины. Тепловые реле и встроенная температурная защита при больших перегрузках работают с низкой эффективностью. Лучше в таких ситуациях использовать фазочувствительную защиту.

При применении современных тепловых реле РТТ и РТЛ частота отказов электрооборудования значительно ниже, чем при использовании реле типа ТРН, ТРП и в ряде случаев сравнима с частотой отказов при установке встроенной температурной защиты.

В настоящее время, для защиты особо важных электродвигателей применение находят современные универсальные микропроцессорные устройства защиты , совмещающие в себе все типы защиты и имеющие возможность гибкой настройки параметров срабатывания.

универсальные микропроцессорные устройства защиты

Область применения различных устройств защиты зависит от числа выходов электрооборудования из строя, размеров технологического ущерба при отключении, затрат на приобретение аппаратуры защиты. Для выбора предпочтительного варианта необходимо технико-экономическое сравнение.

Источник