Меню

Ток соленоида равен нулю

Магнитное поле бесконечного соленоида

Соленоидом называется проводник, намотанный на цилиндрическую поверхность.

Если витки соленоида намотаны вплотную друг к другу, то соленоид удобно представлять в виде совокупности витков одинакового радиуса, расположенных параллельно друг другу вдоль оси соленоида. Центры витков расположены на оси, плоскости витков перпендикулярны оси. Токи во всех витках одинаковы.

Как показано в разд. 3.4, вектор магнитной индукции на оси витка параллелен ей. Следовательно, и суммарное поле всех витков на оси соленоида параллельно этой оси.

Поскольку соленоид симметричен относительно оси, проходящей через центры витков, постольку и созданное им магнитное поле должно быть симметричным относительно этой оси.

Следовательно, магнитное поле параллельно оси соленоида и в остальных точках, расположенных внутри соленоида.

Магнитное поле вне бесконечного соленоида равно нулю. Это можно доказать следующим образом.

* Иногда этот закон называют теоремой о циркуляции вектора магнитной индукции.

Вначале допустим, что магнитное поле вне соленоида всё же существует.

Тогда оно должно быть симметричным относительно оси соленоида. Это значит, что силовые линии магнитного поля вне соленоида должны быть параллельны его оси.

Для определения индукции магнитного поля вне соленоида воспользуемся законом полного тока.

Найдём циркуляцию вектора магнитной индукции по прямоугольному контуру, у которого сторона ab проходит вдоль витков соленоида вблизи от них, а сторона cd находится бесконечно далеко от витков.

Скалярное произведение Bdl во всех точках сторон bc и da равно нулю, так как угол между В и dl на этих сторонах прямой.

Магнитное поле бесконечно далеко от соленоида равно нулю, поэтому вклад участка cd в циркуляцию также равен нулю.

Прежде чем определять вклад участка ab , найдём алгебраическую сумму токов, охваченных контуром abcd.

Поскольку контур не охватывает ни один виток соленоида, сумма токов равна нулю.

Следовательно, и циркуляция вектора В по контуру abcd должна быть равна нулю.

Но это означает, что и на участке ab скалярное произведение равно нулю. Это возможно лишь в том случае, если индукция магнитного поля и вблизи от поверхности соленоида равна нулю.

Таким образом, магнитное поле вне бесконечно длинного соленоида действительно равно нулю.

Теперь найдём индукцию магнитного поля внутри соленоида.

В качестве контура интегрирования выберем прямоугольник 1234, две стороны которого параллельны оси соленоида, охватывающий несколько витков соленоида.

Циркуляция В по этому контуру равна

На участках 23 и 41 индукция поля в соленоиде Вс перпендикулярна элементу контура dl, поэтому скалярное произведение Вс и dl равно нулю.

Интеграл на участке 34 также равен нулю, так как поле вне бесконечного соленоида равно нулю.

Следовательно, , где l12 – длина стороны 12 контура интегрирования.

При вычислении интеграла были учтены следующие соображения:

– внутри соленоида направление магнитной индукции и направление обхода контура совпадают, поэтому скалярное произведение Bdl равно произведению модулей этих векторов;

– модуль вектора магнитной индукции во всех точках участка контура 12 одинаков, поэтому В можно вынести за знак интеграла;

– интеграл , поэтому циркуляция равняется произведению модуля магнитной индукции на длину участка 12.

Ток, охваченный этим контуром, равен nl12I, где n – количество витков на единице длины соленоида, I – ток в одном витке.

На основе закона полного тока циркуляция вектора магнитной индукции равна произведению mо на алгебраическую сумму токов, охваченных контуром,

сокращая длину участка 12, получаем выражение для расчёта индукции магнитного поля внутри бесконечного соленоида:

Обратите внимание на то, что величина В внутри соленоида не зависит от расстояния между точкой и осью соленоида. Это значит, что магнитное поле внутри бесконечного соленоида однородно.

Магнитное поле тороида

Тороидом называется соленоид, свёрнутый в кольцо.

Поскольку тороид симметричен относительно оси, проходящей через его центр перпендикулярно плоскости, в которой лежит тороид, то и магнитное поле должно быть симметрично относительно этой оси. Следовательно, силовые линии магнитного поля в тороиде также должны быть симметричны относительно той же самой оси.

В качестве контура интегрирования удобно выбрать окружность, совпадающую с какой-либо силовой линией магнитного поля.

В этом случае циркуляция вектора магнитной индукции (направления В и dl во всех точках контура совпадают, поэтому скалярное произведение Bdl равно произведению их модулей; магнитная индукция во всех точках контура одинакова, следовательно, её можно вынести за знак интеграла).

Ток, охваченный контуром, , где N – число витков тороида.

Тогда в соответствии с законом полного тока

.

Обратите внимание: магнитная индукция поля внутри тороида зависит от расстояния между центром тороида и точкой внутри него. Величина В обратно пропорциональна расстоянию r.

Можно показать, что поле вне тороида равно нулю (примерно так же, как это было сделано в предыдущем разделе для поля вне соленоида).

Индуктивность соленоида

Рассмотрим произвольный замкнутый контур с током I. В соответствии с законом Био–Савара–Лапласа индукция магнитного поля, созданного контуром, прямо пропорциональна силе тока в проводнике.

Магнитный поток, охваченный контуром, прямо пропорционален индукции магнитного поля внутри контура и его площади .

Если охваченная контуром площадь неизменна, то величина магнитного потока прямо пропорциональна В и, следовательно, силе тока в контуре I

Коэффициент пропорциональности L называется коэффициентом индуктивности, или индуктивностью контура.

Индуктивность является размерным коэффициентом пропорциональности. В системе СИ размерность индуктивности [L] = Гн (генри).

Найдём выражение для расчёта индуктивности соленоида.

Как показано в разд. 3.11.1, магнитная индукция поля внутри соленоида В = mоnI.

Читайте также:  Из чего состоит генератор переменного тока физика 9 класс

Магнитный поток через один виток соленоида Ф = mоnIS =
= , где l длина соленоида, N – количество витков соленоида на длине l, S – площадь витка соленоида.

Магнитный поток через N витков соленоида равен .

Это означает, что для соленоида

и отсюда индуктивность соленоида

,

где V – объём соленоида.

Таким образом, индуктивность соленоида без сердечника определяется плотностью витков и объёмом соленоида.

Магнитное поле в веществе

Магнитное поле создаётся электрическим током.

Если один ток создаёт магнитное поле в вакууме, а второй, такой же – в веществе, то созданные ими магнитные поля будут разными. Причём в некоторых веществах магнитное поле будет слабее поля в вакууме, в других – сильнее.

По соотношению поля в веществе и в вакууме вещества делят на три класса: диамагнетики, парамагнетики и ферромагнетики.

В данном разделе будут рассмотрены причины, по которым разные вещества намагничиваются по-разному.

Намагничивание магнетика

Всякое вещество является магнетиком. Это значит, что всякое вещество способно намагничиваться, т. е. под действием внешнего магнитного поля в нём возникает дополнительное, собственное магнитное поле. Другими словами – индукция магнитного поля внутри магнетика В складывается из индукции внешнего поля Во и индукции собственного поля В¢:

В = Во+В¢.

Механизм намагничивания вещества был раскрыт французским учёным Андре Мари Ампером, который предположил, что во всех молекулах вещества циркулируют круговые токи. Каждый такой ток создаёт магнитное поле. Но, поскольку в отсутствие магнитного поля молекулярные токи ориентируются хаотически, суммарное магнитное поле всех этих токов равно нулю.

Появление внешнего магнитного поля вызывает упорядочение ориентации молекулярных круговых токов, в результате чего суммарное магнитное поле молекулярных токов становится отличным от нуля, а магнетик – намагниченным.

Намагничивание магнетика количественно характеризуют намагниченностью J, которая определяется выражением

,

где – суммарный магнитный момент всех молекул, находящихся в элементарном объёме DV в окрестности интересующей нас точки.

Размерность вектора намагниченности [J] = [pm]/[V] =
А . м 2 /м 3 = А/м.

Итак, намагничивание вещества есть результат упорядочивания ориентации молекулярных токов внешним магнитным полем. Условно это можно представить так, как показано на рисунке.

Как видно из рисунка, токи внутри объёма магнетика компенсируют друг друга.

Токи же, выходящие на боковую поверхность, компенсироваться не будут.

Поэтому намагничение вещества можно трактовать как результат появления на боковой поверхности магнетика макроскопического тока намагничивания I¢.

Источник

Изучение магнитного поля соленоида

Лабораторная работа № 9

Изучение магнитного поля соленоида

1.Цель работы

Изучение распределения магнитного поля конечного соленоида при помощи явления электромагнитной индукции.

2.Краткое теоретическое введение

Соленоид – это цилиндрическая катушка, обмотка которой состоит из большого числа витков проволоки, образующих винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов, имеющих общую ось. Индукция магнитного поля в любой точке соленоида равно векторной сумме индукций магнитных полей, создаваемых в данной точке всеми витками. Вектор магнитной индукций в точке, лежащей на оси соленоида конечных размеров, направлен вдоль оси, а его значение вычисляется по формуле:

где L — длина соленоида, R–радиус его витков,

Х – расстояние от края соленоида до исследуемой точки,

I – сила тока, протекающего по виткам,

n — число витков на единицу длина соленоида,

— относительная магнитная проницаемость среды,

μ0 — магнитная постоянная.

Единицей измерения индукции магнитного поля в системе СИ является «Тесла»: [B] = Тл

Из выражения (1) следует, что индукция магнитного поля максимальна на оси соленоида в точке, соответсвующей его середине:

Если длина соленоида намного превышает радиус его витков, то соленоид можно условно считать бесконечно длинным. Магнитное поле внутри бесконечно длинного соленоида является однородным, при этом его индукция равна:

Распределение магнитного поля соленоида конечной длины является более сложным по сравнению с простейшим случаем бесконечно длинного соленоида. Для многих других конфигураций магнитного поля, теоретический расчет которых затруднителен, предпочтительней определять магнитную индукцию экспериментально.

Величину можно измерить, использую, например, явление электромагнитной индукции. Если в некоторую точку магнитного поля поместить не большой контур, то при изменениях магнитного потока, пронизывающего этот контур, в последнем возникнет э. д.с., индукции, электромагнитной индукции (закону Фарадея), имеем:

В настоящей работе в качестве контура используется измерительная катушка (ИК), состоящая из большого количества витков N. Возникающая в ней э. д.с. индукции складывается из э. д.с. отдельных витков, т.е.

где S –площадь поперечного сечения ИК.

Если в обмотке соленоида протекает переменный ток, то магнитное поле, создаваемое этим током, также является переменным, т. е.

где В0 — амплитудное значение магнитной индукции,

– циклическая частота переменного тока.

Из формул (5) и (6) следует, что э. д.с. индукции, наведения ИК, изменяется во времени по закону:

где e0 — амплитудное значение э. д.с., равное

e0 = NSwB0 = kB0 , (8)

Коэффициент называется градуировочной постоянной измерительной установки. Ее можно определить экспериментально.

Вольтметр, используемый для измерения э. д.с. индукции e, показывает эффективное значение переменного напряжения U, связанное с амплитудным значением э. д.с. (e0) соотношением:

Максимальному значению индукции магнитного поля в центре соленоида (2) соответствует максимальное эффективное значение напряжения:

Из формул (9) и (10) следует, что отношение эффективного напряжения в любой точке нахождения ИК к его максимальному эффективному значению в центре соленоида равно отношению магнитной индукции в этой точке к максимальной магнитной индукции в центре соленоида:

Поэтому распределение индукции магнитного поля соленоида можно изучать, не вычисляя градуировочную постоянную измерительной установки k.

Читайте также:  Может ли шерсть бить током

3.Описание экспериментальной установки.

Внутри исследуемого соленоида при помощи стрежня с указателем, скользящим вдоль шкалы, может перемещаться измерительная катушка. Ось катушки параллельна оси соленоида. ИК можно передвигать и в направлении, перпендикулярном оси соленоида. Установка собирается по электрической схеме, приведенной на рис.1. Обмотка соленоида питается переменным током, измеряемым амперметром и изменяемым при помщи реостата. Э. д.с. индукции, возникающая в ИК, измеряется вольтметром. Это эффективное значение э. д.с. индукции, связанное с амплитудным значением индукции магнитного поля соленоида в точке нахождения ИК по формуле (9).

Измерения сводятся к фиксации координаты расположения ИК относительно соленоида и значения э. д.с. индукции, соответствующего этому положения.

4.Рабочее задание

Задание 4.1. Распределение индукции магнитного поля конечного соленоида.

4.1.1. Соберите электрическую цепь по схеме на рис.1

4.1.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.1.3. Изменяя положение ИК относительно соленоида, измерьте э. д.с. индукции. ИК следует перемещать вдоль оси соленоида 2 см, записывая для каждой координаты показания вольтметра в таблицу 4.1.

4.1.4.Постройте график зависимости

4.1.5.Постройте в том же масштабе теоретическую кривую зависимости , пользуясь расчетными формулами (1),(2). Сравните экспериментальную и теоретическую зависимости. Оцените систематическую погрешность проведенных измерений.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Источник

Ток соленоида равен нулю

Применим теорему о циркуляции вектора для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).

Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.

Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.

Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.

Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.

Второй и четвёртый интегралы равны нулю, т.к. вектор перпендикулярен направлению обхода, т.е .

Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда

где – магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.

Если отрезок 1–2 внутри соленоида, контур охватывает ток:

где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).

Тогда магнитная индукция внутри соленоида:

, (2.7.1)

Вне соленоида:

и , т.е. .

Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.

Произведение nI – называется число ампер витков на метр.

У конца полубесконечного соленоида, на его оси магнитная индукция равна:

, (2.7.2)

Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.

Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:

· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:

, (2.7.3)

где L – длина соленоида, R – радиус витков.

· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле

, (2.7.4)

На рисунке 2.15 изображены силовые линии магнитного поля : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.

Источник



ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА

date image2015-08-21
views image13507

facebook icon vkontakte icon twitter icon odnoklasniki icon

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид — как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками — сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А , расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

где и — углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

Читайте также:  Ток холостого хода асинхронного эле

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
(«бесконечно» длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле

где k — коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда — маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

где N1 — число витков в катушке, S — площадь поперечного сече­ния катушки, Ф — магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

где — амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

Для действующих значений тока и ЭДС формула (10) имеет вид

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

где А — коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки — зонда — милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z — шток «

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

№ п/п Положение линейки-Х

Погрешность в каждой точке, соленоида определяется как систематическая погрешность косвенных измерений:

где м 2 , виток; =1 Гц; — погреш­ность измерения ; по милливольтметру.

6.Зная амплитуду тока и число витков на единицу
длины соленоида n, определить в центре соленоида по
формуле (4) и сравнить с измеренным в той же точке значением

Задание 2. Измерение коэффициента неоднородности’ магнитного
поля соленоида.

1. Снять зависимость для данного соленоида. Дня этого установить шток в положение, когда катушка-зонд находится у края соленоидами, изменяя действующее значение тока соленоида с помощью источника питания, снять значения и и занести в таблицу 2.

Измерения

По формуле (12) рассчитать , где

1. Сформулируйте закон электромагнитной индукции.

2. Нарисуйте картину силовых линий соленоида.

3. Перечислите основные способы исследования магнитного поля.

4. В каких случаях для исследования магнитного поля можно исполь­зовать катушку-зонд?

5. Выведите формулу для вектора магнитной индукции бесконечно длинного соленоида.

Литература

3. Скорохватов Н.А. Курс лекций по электромагнетизму. М: МИИГАиК, 2006.

4. Савельев И.В., Курс общей физики, т. 2 (любое издание).

5. Трофимова Т.И., Курс физики (любое издание).

Источник