Меню

Ток в узле всегда равен

Правила Кирхгофа для разветвлённых цепей

Введём понятие узла. Узел – точка цепи, в которой сходится не менее трёх проводников.

Тогда разветвлённой цепью назовём цепь, имеющую один или более узлов.

Для расчёта таких цепей используются два правила Кирхгофа.

Первое правило Кирхгофа

Рис. 1. Первое правило Кирхгофа

Первое правило Кирхгофа: сумма токов, входящих в узел, равна сумме токов, выходящих из узла (рис. 1). A — узел в цепи постоянного тока. Путь в цепи протекают токи \displaystyle <<I data-lazy-src=

Рис. 2. Второе правило Кирхгофа (цепь)

Второе правило Кирхгофа касается такого понятия как контур. Назовём контуром замкнутый участок цепи, содержащий любые элементы цепи. Для визуализации правила введём произвольную цепь с узлами (рис. 2). Пусть наша цепь содержит резисторы \displaystyle <<R data-lazy-src=

Рис. 3. Второе правило Кирхгофа (Контур)

По нашей схеме нарисуем контуры (рис. 3). В цепе можно выделить 3 контура обхода: для определённости, красный, синий и зелёный.

Расставим токи для каждого из элементов, обладающих сопротивлением (рис. 4). Направление силы тока выбираем случайным образом.

Второе правило Кирхгофа (Сила тока)

Рис. 4. Второе правило Кирхгофа (Сила тока)

Тогда второе правило Кирхгофа — сумма падений напряжений на каждом из элементов контура равно сумме ЭДС в этом контуре.

\displaystyle U=IR(2)

  • где
    • \displaystyle U— напряжение,
    • \displaystyle I— сила тока,
    • \displaystyle R— сопротивление.

Тогда второе правило Кирхгофа формульно:

\displaystyle \sum\limits_<i data-lazy-src=

1. Теория: Законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Сложная электрическая цепь

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Первый закон Кирхгофа

Рисунок 2. Узел электрической цепи.

Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Второй закон Кирхгофа

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Расчет по законам Кирхгофа

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Моделирование результатаРисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Разветвленные цепи. Правила Кирхгофа.

Законы Кирхгофа для разветвленной цепи (разветвленная цепь – электрическая цепь, содержащая узлы – места, где сходятся не менее трех проводников):

а) По первому закону Кирхгофаалгебраическая сумма токов, сходящихся в узле, равна нулю . Токи, приходящие к узлу, считаются положительными, а токи, отходящие от узла, отрицательными.

б)Второй закон Кирхгофа: в замкнутом контуре алгебраическая сумма произведений токов в участках на сопротивление этих участков равна алгебраической сумме электродвижущих сил, включенных в данный контур

,

где – алгебраическая сумма сил токов, сходящихся в узле; – алгебраическая сумма произведений сил токов на сопротивления замкнутых участков; – алгебраическая сумма ЭДС источников тока на замкнутом участке цепи.

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи.

2. Выбрать направление обхода контура; произведение положительно, если ток на участке совпадает с направлением обхода, и, наоборот; ЭДС, действующие по выбранному направлению обхода (перемещение происходит внутри источника тока от катода к аноду), считаются положительными.

3. Составить столько уравнений, чтобы их число было равно числу неизвестных электрических величин; каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержавшийся в предыдущих контурах.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Например, для рис. 148 первое правило Кирхгофа запишется так:

Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.

Второе правило Кирхгофа получается из обобщенного закона Ома для разветвлен­ных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с напра­влением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:

Складывая почленно эти уравнения, получим

(101.1)

Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. , встречающихся в этом контуре:

(101.2)

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному.

2. Выбрать направление обхода контура и строго его придерживаться; произведе­ние IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются поло­жительными, против — отрицательными.

3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных.

В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измеритель­ногомоста Уитстона.* Сопротивления R1, R2, R3и R4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG.Для узлов А, В и С, применяя первое правило Кирхгофа, получим

(10 1.3)

Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать:

(101.4)

* Ч. Уитстон (1802—1875) — английский физик.

Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R2, R3 иR4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем

(101.5)

а из (101.4) получим

(101.6)

Из (101.5) и (101.6) вытекает, что

(101.7)

Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют.

На практике обычно используетсяреохордный мост Уитстона (рис. 151), где сопротивле­ния R3и R4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R3/R4 можно заменить отношением l3/l4. Тогда, используя выражение (101.7), можно записать

(101. 8)

Длины l3 и l4 легко измеряются по шкале, a R2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R1.

Параллельное соединение приемников. Вначале рассмотрим графоаналитический метод расчета цепи с параллельным соединением потребителей (рис. 2.16, а). Для такой цепи характерно то, что напряжения на каждой ветви одинаковы, общий ток равен сумме токов ветвей.

Ток в каждой ветви определяется по закону Ома:

I1 = U ; I2 = U ; I3 = U (xL3 > xC3).
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2

Угол сдвига φ между током каждой ветви и напряжением определяют с помощью cos φ:

cos φ1 = r1 ; cos φ2 = r2 ; cos φ3 = r3 .
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2
Рис. 2.16. Цепь с параллельным соединением потребителей (а) и ее векторная диаграмма (б)

Общий ток в цепи, как следует из первого закона Кирхгофа, равен геометрической сумме токов всех ветвей:

Значение общего тока определяют графически по векторной диаграмме рис. 2.16, б.

Активная мощность цепи равна арифметической сумме активных мощностей всех ветвей:

Реактивная мощность цепи равна алгебраической сумме реактивных мощностей всех ветвей:

n
Q = Qk .

причем реактивную мощность ветви с индуктивностью берут со знаком плюс, ветви с емкостью — со знаком минус. Для цепи рис. 2.16 реактивная мощность равна

Полная мощность цепи

S = √P 2 + Q 2 .

Угол сдвига φ между общим током и напряжением определяют из векторной диаграммы или из выражения:

Графоаналитический метод не удобен для расчета разветвленных цепей: он отличается громоздкостью и невысокой степенью точности.

Для анализа и расчета разветвленных цепей переменного тока используют проводимости, с помощью которых разветвленную цепь можно преобразовать в простейшую цепь и аналитически рассчитать токи и напряжения всех ее участков.

В цепях постоянного тока проводимостью называется величина, обратная сопротивлению участка цепи:

g = 1/r

и ток в цепи выражается как произведение напряжения на проводимость:

Рис. 2.17. Электрическая цепь (а), ее векторная диаграмма (б) и эквивалентная схема (в); векторная диаграмма цепи при резонансе

В цепях переменного тока существуют три проводимости — полная,

активная и реактивная, причем только полная проводимость является величиной, обратной полному сопротивлению последовательного участка цепи.

Выражения проводимостей в цепях переменного тока можно получить следующим образом.

Ток в каждом неразветвленном участке цепи раскладывают на две составляющие, одна из которых есть проекция на вектор напряжения (активная составляющая тока Ia ), а другая — на линию, перпендикулярную вектору напряжения (реактивная составляющая тока Iр ).

Активная составляющая тока определяет активную мощность

P = UI cos φ = UIa ;

реактивная составляющая тока — реактивную мощность

Q = UI sin φ = UIр.

Из векторной диаграммы цепи рис. 2.17, а, изображенной на рис. 2.17, б, следует, что активная составляющая тока I1 равна

I1a = I1 cos φ1 = U r = Ur1/z1 2 = Ug1.
z1 z1

называется активной проводимостью ветви. Реактивная составляющая тока I1 равна

Ilp = I1 sin φ1 = U xL = UxL/z1 2 = Ub1.
z1 z1

называется реактивной проводимостью ветви цепи с индуктивностью и в общем случае обозначается bL.

Аналогично определяют активную g2 и реактивную b2 проводимости второй ветви цепи:

Реактивная проводимость ветви с емкостью в общем случае обозначается bC.

Вектор тока первой ветви равен геометрической сумме векторов активной и реактивной составляющих тока

а значение тока

Выразив составляющие тока через напряжение и проводимости, получим

где у1 = 1/z1 =g1 2 + bL1 2 — полная проводимость ветви.

Аналогично определяют и полную проводимость второй ветви:

Эквивалентные активную, реактивную и полную проводимости цепи получают следующим образом.

Вектор общего тока цепи равен геометрической сумме векторов токов Ī1 и Ī2:

и может быть выражен через активную и реактивную составляющие тока и эквивалентные проводимости всей цепи:

Активная составляющая общего тока (см. рис. 2.17, б) равна арифметической сумме активных составляющих токов ветвей:

а реактивная составляющая — арифметической разности реактивных составляющих этих токов:

Рис. 2.18. К расчету разветвлен- ной цепи с использова- нием проводимостей

Из выражений (2.24) и (2.25) следует, что эквивалентная активная проводимость цепи равна арифметической сумме активных проводимостей параллельно включенных ветвей:

а эквивалентная реактивная проводимость — алгебраической сумме реактивных проводимостей параллельно включенных ветвей:

При этом проводимости ветвей с индуктивным характером нагрузки берут со знаком плюс, ветвей с емкостным характером нагрузки — со знаком минус. Полная эквивалентам проводимость цепи

По эквивалентным активной, реактивной и полной проводимостям можно определить параметры эквивалентной схемы (рис. 2.17, в) цепи.

Эквивалентные активное, реактивное и полное сопротивления цепи определяют с помощью выражений

Необходимо отметить, что если ΣbL > ΣbC, то эквивалентное сопротивление хэ будет индуктивным, если ΣbC > ΣbLемкостным.

Смешанное соединение потребителей.Расчет цепи при смешанном соединении потребителей (рис. 2.18, а) может быть произведен путем замены ее простейшей эквивалентной цепью. Для этого вначале определяют активные, реактивные и полные проводимости параллельно включенных ветвей: g1, g2, b1, b2, у1, у2.

Затем находят эквивалентные активную, реактивную и полную проводимости параллельного участка цепи:

Далее определяют эквивалентные активное, реактивное и полное сопротивления параллельного участка цепи:

В результате расчетов цепь может быть заменена эквивалентной цепью (рис. 2.18, б), где все сопротивления включены последовательно. Общие активное, реактивное и полное сопротивления цепи равны

Цепь приобретает простейший вид, изображенный на рис. 2.18, в. Общий ток цепи определяют по закону Ома:

Источник



Закон Кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Схема параллельного соединения проводников

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа в комплексной форме

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

Рассмотрим применение 1 закона Кирхгофа

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

участок электрической цепи

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Формула второго закона Кирхгофа в комплексной форме уравнение для постоянных напряженийУравнение для переменных напряжени — Формула второго закона Кирхгофа в комплексной форме уравнение для переменных напряжений

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

2 закон Кирхгофа для электрической цепи e_1-e_2+e_3=I_1 R_1-I_2 R_2+I_3 R_3-I_4 R_4.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

пример применения второго правила Кирхгофа

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник

Читайте также:  Масса обмотки двигателя постоянного тока