Меню

Токи фуко плавление металла

Индукционный нагрев: технология бесконтактной плавки металла

Главная страница » Индукционный нагрев: технология бесконтактной плавки металла

Индукционный нагрев: технология бесконтактной плавки металла

Индукционный нагрев — метод быстрого, эффективного, бесконтактного прогрева проводящих материалов — металлов и полупроводников. Основой метода является принцип применения флуктуирующего магнитного поля. Методика считается предпочтительной технологией прогрева среди всех других, существующих на текущий момент времени.

Исторические памятки на заметку

Применяется отмеченная техника плавки в промышленности, медицине, бытовой сфере, благодаря выраженным преимуществам по сравнению с традиционными методами прогрева:

  • резистивным,
  • пламенным,
  • печным и другими.

Индукционный нагрев особенно полезен для выполнения высокоточных или повторяющихся операций.

Индукционный нагрев впервые применил Майкл Фарадей – физик и химик в одном лице – выходец из Великобритании. Учёный обнаружил уникальное свойство нагрева в момент изучения индукции токов в проводах под действием магнита.

Однако базовые принципы индукционного нагрева чуть позже представил Джеймс Максвелл в единой теории электромагнетизма. В то же время Джеймс П. Джоуль первым описал эффект прогрева током, протекающим через проводящий материал.

На момент 1887 года, Себастьян Зиани де Ферранти предложил индукционный нагрев как метод плавки металлов. Первую полнофункциональную индукционную печь соорудил и представил обществу (1891 год) Ф. А. Кьеллин, Первое применение высокочастотной печи реализовано Эдвином Ф. Нортрупом (1916 год).

Разработка твердотельных генераторов с использованием новых технологий силовых полупроводников обеспечила потенциал за пределами промышленной среды. С конца 1980-х годов появились различные предложения к применению.

Последние годы фиксируется особый интерес к индукционному нагреву под медицинские процедуры, поскольку этот метод обеспечивает точное и целевое локальное прогревание.

Основы технологии индукционного нагрева

Технология индукционного нагрева требует источника переменного тока, пропускаемого через катушку индуктивности. В результате катушка индуктивности генерирует переменное магнитное поле, что приводит к следующему эффекту:

Индукционный нагрев: практическое применение на практике

Вот такого эффекта, к примеру, удаётся достичь посредством использования описываемой технологии работы с металлами, элементами полупроводниками

Когда объект помещается в область этого поля, возникают два эффекта прогрева:

  1. Гистерезисные потери, которые неизбежно возникают только в магнитных материалах, подобных железу, никелю, кобальту и т. д. Причина потерь — трение между молекулами, когда материал постоянно намагничивается в разных направлениях. Более высокая частота колебаний магнитного поля приводит к более быстрому движению частиц, что вызывает значительное трение и, следовательно, выделение большого количества тепла.
  2. Потери на вихревые токи, которые возникают как эффект Джоуля в любом проводящем материале из-за влияния электрических токов, вызванных флуктуирующим магнитным полем.

Оба эффекта приводят к прогреву обработанного объекта, но второй чаще всего является основным источником тепла в процессах индукционного нагрева. Кроме того, гистерезис не наблюдается в немагнитных материалах.

Магнитные материалы теряют магнитную специфичность при прогревании выше определённой температуры (точка Кюри).

Индукционный нагрев: принцип получения прогрева объекта

Принцип получения прогрева: 1, 2 – переменный ток; 3 – объект, подлежащий воздействию магнитным полем; 4 – магнитные потоки; 5 – вихревые токи

Вихревые токи также зависят от частоты магнитного поля по причине скин-эффекта: на высоких частотах токи протекают вблизи поверхности проводника.

Эта специфика используется для контроля глубины проникновения процесса индукционного нагрева. В результате прогревается либо весь объект, либо только конкретная часть (например, область поверхности).

Индукционный нагрев: использование для различных применений

Таким образом, индукционный нагрев может использоваться для различных применений:

  • плавки металла,
  • пайки,
  • поверхностного упрочнения и т.д.

Проводникам индукционной катушки также присущ скин-эффект. Поэтому вместо сплошных проводов следует использовать трубы. Когда ток протекает через индуктор, аналогичные резистивные потери наблюдаются из-за эффекта Джоуля. Для предотвращения расплавления и повреждения катушки часто применяется водяное охлаждение.

Индукционный нагрев: принципиальная схема маломощной установки

Принципиальная схема установки для бытового применения, собираемая из электронных компонентов вполне доступных для приобретения на коммерческом рынке

Учитывая обширное наличие электрических (электронных) компонентов, доступных простому обывателю, есть все возможности для создания системы индукционного нагрева своими руками для бытового применения. Возможная для выполнения схема бытового устройства относительно небольшой мощности представлена выше.

Электрический воздушный компрессор, 220В/110В 30 мпаЭлектрический воздушный компрессор высокого давленияЭлектрический воздушный насос высокого давления

Индукционный нагрев – преимущественные стороны

Если рассматривать индукционную технологию и сравнивать с некоторыми классическими технологиями нагрева:

  • резистивный,
  • пламенный,
  • печной и т. д.

Индукционный нагрев выделяют следующие преимущества:

  1. Малое время процесса, когда благодаря индукционному нагреву, объект прогревается напрямую, что приводит к сокращению как времени прогрева, так и потерь тепла. Этот метод обеспечивает высокую плотность мощности и низкую (практически нулевую) тепловую инерцию.
  2. Высокий КПД (значение выше 90%) достигается благодаря правильной конструкции силового преобразователя и катушки. Кроме того, высокие температуры могут достигаться быстро и легко, учитывая существенное снижение потерь тепла в окружающую среду.
  3. Высокий уровень управления — точное регулирование мощности прогрева, достигается с помощью соответствующей конструкции катушки и управления силовым преобразователем. В результате допустимо реализовать дополнительные функции: локальный прогрев, предварительный прогрев, предварительно определенные температурные профили.
  4. Благодаря опции промышленной автоматизации, индукционный нагрев позволяет улучшить как производительность, так и качество процессов. Качество продукта гарантируется, поскольку прогревание осуществляется бесконтактным способом (без вмешательства технологического инструмента).
  5. Безопасность и чистота обеспечиваются в процессе, учитывая отсутствие теплового загрязнения (загрязнения воздуха), так как объект прогревается напрямую, без использования топливных ресурсов.

Инновации технологии индукционного нагрева и будущее развитие

Даже с учётом того, что системы индукционного нагрева уже достигли зрелости в качестве технологии, развитие современных технологий постоянно сопровождается возможностями для новых направлений исследований.

Ближайшие годы обещают пополниться следующими темами, которые, как ожидается, должны представлять значительный интерес для индустриального сектора.

Повышение эффективности применения

Совершенство технологий производства полупроводников обещает появление систем индукционного нагрева более высокой эффективности. Кроме того, специальные формы и конструкции катушки индуктивности также обеспечат повышение эффективности технологии.

В результате улучшения следует ждать не только в плане производительности, но и в плане надежности систем индукционного нагрева.

Индустриальная установка индукционного нагрева

Индустриальные машины, относящиеся к описываемой технологии, то есть – поддерживающие индукционный нагрев, уже несколько последних лет отмечаются активным совершенствованием

Технологические нагреватели, наделённые несколькими катушками – это:

  • лучшее распределение тепла,
  • более высокая производительность,
  • гибкость процессов,

при использовании нескольких одновременно работающих катушек.

Такие системы представляют значительный технологический прорыв и всё чаще применяются не только в промышленности, но и в бытовом секторе. Однако не обходится и без проблем.

Так, следует приложить усилия для оптимизации конструкции преобразователя мощности с несколькими выходами и передовые алгоритмы управления. Другая проблема для внимательного рассмотрения, — это эффект связи между отдельными катушками.

Совершенство процесса управления и расширение применения

Усовершенствованное управление требует внедрения надёжных алгоритмов управления для обеспечения правильной работы преобразователя мощности под различные нагрузки индукционного нагрева и рабочих точек.

Управление системами, где используются несколько катушек, является еще одной проблемой. Ожидается повышение производительности и оптимизация переходных процессов за счёт внедрения блоков управления идентификацией в реальном времени с адаптивными алгоритмами.

Ожидается, что диапазон применения индукционного нагрева будет увеличиваться с ростом технологий. Прогрев материалов с низким удельным сопротивлением, а также прогрев биологических тканей, используемых для медицинских целей, являются вопросами, представляющими особый интерес.

Есть ещё другие применения, которые нуждаются в дальнейших исследованиях для оптимизации параметров процесса.

При помощи информации: UltraFlexPower

Что такое криптовалюта и с чем её едят?

Что такое криптовалюта и с чем её едят?

Ядерный синтез технология токамак стелларатор z-пинч

Ядерный синтез технология токамак стелларатор z-пинч

Металлорганические каркасы (MOF - Metal Organic Framework) – что это такое?

Металлорганические каркасы (MOF — Metal Organic Framework) – что это такое?

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник

masterok

Мастерок.жж.рф

Хочу все знать

В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.
Индукционный нагрев металлов основан на двух физических законах: законе электромагнитной индукции Фарадея-Максвелла и законе Джоуля-Ленца. Металлические тела (заготовки, детали и др.) помещают в переменное магнитное поле, которое возбуждает в них вихревое электрическое поле. ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту по закону Джоуля-Ленца. Эта ЭДС создает в металле переменный ток, тепловая энергия, выделяемая данными токами, является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.

Читайте также:  Условные обозначения датчиков тока

Под катом видео с девайсом от 12 вотльт

Индукционный нагрев и закалка металловИнтенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами — индукторами. Индукторы питают от сети 50 Гц (установки промышленной частоты) или от индивидуальных источников питания — генераторов и преобразователей средней и высокой частоты.
Простейший индуктор устройств косвенного индукционного нагрева низкой частоты — изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубе наводятся греющие ее вихревые токи. Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).

Наиболее широко применяется прямой индукционный нагрев металлов на средних и высоких частотах. Для этого используют индукторы специального исполнения. Индуктор испускает электромагнитную волну, которая падает на нагреваемое тело и затухает в нем. Энергия поглощенной волны преобразуется в теле в теплоту. Для нагрева плоских тел применяют плоские индукторы, цилиндрических заготовок — цилиндрические (соленоидные) индукторы. В общем случае они могут иметь сложную форму, обусловленную необходимостью концентрации электромагнитной энергии в нужном направлении.

Особенностью индукционного ввода энергии является возможность регулирования пространственного расположения зоны протекания вихревых токов. Во-первых, вихревые токи протекают в пределах площади, охватываемой индуктором. Нагревается только та часть тела, которая находится в магнитной связи с индуктором независимо от общих размеров тела. Во-вторых, глубина зоны циркуляции вихревых токов и, следовательно, зоны выделения энергии зависит, кроме других факторов, от частоты тока индуктора (увеличивается при низких частотах и уменьшается с повышением частоты). Эффективность передачи энергии от индуктора к нагреваемому току зависит от величины зазора между ними и повышается при его уменьшении.

Индукционный нагрев применяют для поверхностной закалки стальных изделий, сквозного нагрева под пластическую деформацию (ковку, штамповку, прессование и т. д.), плавления металлов, термической обработки (отжиг, отпуск, нормализация, закалка), сварки, наплавки, пайки металлов.

Косвенный индукционный нагрев применяют для обогрева технологического оборудования (трубопроводы, емкости и т. д.), нагрева жидких сред, сушки покрытий, материалов (например, древесины). Важнейший параметр установок индукционного нагрева — частота. Для каждого процесса (поверхностная закалка, сквозной нагрев) существует оптимальный диапазон частот, обеспечивающий наилучшие технологические и экономические показатели. Для индукционного нагрева используют частоты от 50Гц до 5Мгц.

Преимущества индукционного нагрева

1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.

2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.

3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.

4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.

Источник

Индукционный нагрев, основные принципы и технологии.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Читайте также:  Реле максимального тока функция

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.

Источник



Токи Фуко. Вихревые токи. Описание.

Природа вихревых токов

Фото 2

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.
Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Читайте также:  Закон ома для смешанного соединения источников тока

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

Фото 3

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Фото 4

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя. Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.
При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt Читайте также: Акт передачи показаний электросчетчика при смене собственника

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Следующая страница «ЭДС индукции в движущихся проводниках»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд.Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках — Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Источник