Меню

Токи плавких вставок для защиты трансформаторов

Защита трансформаторов предохранителями

предохранители

Трансформаторы 10/0,4 кВ в сельских и городских распределительных электрических сетях мощностью до 0,63 MB-А включительно, как правило, защищаются плавкими предохранителями на стороне 10 кВ и весьма часто также плавкими предохранителями на стороне 0,4 кВ.

Возможно и такое сочетание, как пре­дохранители на стороне 10 кВ и автоматические выключатели на стороне 0,4 кВ (§ 5). На стороне ВН трансформаторов закрытых подстанций (ЗТП) плав­кие предохранители применяются в сочетании с вы­ключателями нагрузки (ВНП) — разъединителями с автоматическим приводом, которые отключаются при срабатывании плавкого предохранителя хотя бы на одной из фаз.

Плавким предохранителем называется коммута­ционный аппарат, предназначенный для отключения защищаемой цепи посредством расплавления специ­альных токоведущих частей (плавких вставок) под воздействием тока, превышающего определенное значение, с последующим гашением возникающей элек­трической дуги.

Принцип действия и виды плавких предохрани­телей

Плавкий предохранитель как защитный аппа­рат применяется в электрических сетях уже более 100 лет. В основе его работы лежит известный закон Джоуля — Ленца (1841 г.), согласно которому про­хождение электрического тока по проводнику сопро­вождается выделением теплоты Q (в джоулях):

закон Джоуля — Ленца

Плавкая вставка предохранителя является участ­ком защищаемой электрической цепи, имеющим мень­шее сечение и большее сопротивление R, чем осталь­ные элементы этой цепи. Поэтому при прохождении по цепи тока КЗ плавкая вставка нагревается сильнее других элементов защищаемой цепи, раньше расплав­ляется и тем самым спасает электрическую установку от перегрева и разрушения. Но для прекращения про­хождения тока КЗ, т. е. отключения электрической установки от питающей электросети, недостаточно расплавления вставки, необходимо еще погасить воз­никшую в этом месте электрическую дугу. Быстрое га­шение дуги является важнейшей задачей плавкого предохранителя. По способу гашения электрической дуги плавкие предохранители, применяемые для за­щиты трансформаторов, делятся на две основные группы:

  • предохранители с трубками из газогенерирующего материала (фибры или винипласта), который обильно выделяет газы при высокой температуре горения элек­трической дуги; возникающие в этот момент высокое давление (в предохранителях типа ПР напряжением до 1000 В) или продольное дутье (в предохранителях ПСН напряжением выше 1000 В) обеспечивают бы­строе гашение электрической дуги;
  • предохранители с наполнителем (кварцевым пе­ском), в которых электрическая дуга гасится в ка­нале малого диаметра, образованном телом испа­рившейся плавкой вставки, между крупинками (гра­нулами) кварцевого песка; такие предохранители обычно называют кварцевыми.

На стороне 10 кВ трансформаторов устанавли­ваются главным образом кварцевые предохранители типа ПК, на стороне 0,4 кВ — также преимущественно кварцевые типа ПН-2, Кварцевые предохранители имеют несколько важных положительных свойств: они обладают токоогранпчивающсй способностью (благодаря очень быстрому гашению электрической дуги ток КЗ не успевает достичь своего максимального ампли­тудного значения); плавкие вставки защищены от воздействия внешней среды кварцевым песком и герметично закрытой фарфоровой трубкой, благодаря чему они длительное время не стареют и не требуют замены; конструктивное исполнение предохранителей ПК и ПН-2 предусматривает сигнализацию срабаты­вания, причем контакты сигнального устройства могут давать команду на отключение трехфазного выключа­теля нагрузки, что предотвращает возможность неполнофазного режима работы трансформатора.

При ис­пользовании кварцевых предохранителей заводского изготовления с правильно выбранными параметрами, как правило, можно обеспечить селективность между предохранителями на сторонах ВН и НН трансфор­матора или, по крайней мере, между предохраните­лями на стороне ВН трансформатора и защитными аппаратами на отходящих линиях НН, т. е. не допускать отключения трансформатора от питающей сети при КЗ на шинах НН или на любой из отходящих линий НН.

Выбор номинального тока плавкой вставки предохранителя

Высоковольтный предохранитель защищает обмотку высокого напряжения силового трансформатора не только от коротких замыканий, но и от перегрузки, поэтому при выборе плавкой вставки необходимо учитывать и номинальный рабочий ток.

При выборе номинального тока плавкой вставки нужно учитывать несколько факторов.

  1. Во-первых, силовой трансформатор в процессе работы может подвергаться кратковременным перегрузкам.
  2. Во-вторых, при включении трансформатора возникают броски тока намагничивания, которые превышают номинальный ток первичной обмотки.

Также нужно обеспечить селективность работы с защитой, установленной на стороне низкого напряжения (НН) и на отходящих линиях потребителей. То есть в первую очередь должны срабатывать автоматические выключатели (предохранители) на стороне низкого напряжения отходящих линий, которые идут непосредственно на нагрузку к потребителям.

Если эта защита по той или иной причине не срабатывает, то должен сработать автомат (предохранитель) ввода стороны НН силового трансформатора. Предохранители на стороне ВН в данном случае — это резервирующая защита, которая должна срабатывать в случае перегрузки обмотки низкого напряжения и отказе защит со стороны НН.

Исходя из вышеперечисленных требований, плавкая вставка выбирается по двухкратному номинальному току обмотки высокого напряжения.

Таким образом, высоковольтные предохранители, установленные на стороне ВН, защищают от повреждений участок электрической цепи до ввода трансформатора, а также от внутренних повреждений самого силового трансформатора. А предохранители (автоматические выключатели) со стороны НН силового трансформатора защищают сам трансформатор от перегрузок выше допустимого предела, а также от коротких замыканий в сети низкого напряжения.

Номинальный ток обмоток силового трансформатора указывается в его паспортных данных.

Выбор предохранителей для защиты силовых трансформаторов

Основные условия выбора плавких предохранителей силовых трансформаторов является следующие параметры.
Номинальное напряжение предохранителей и их плавких вставок должно быть равно номинальному напряжению сети:

Плавкие предохранители в СССР выпускались на номинальные напряжения, соответствующие ГОСТ 721—77, в том числе на 6; 10; 20; 35; 110 кВ. Номинальное напряжение указывается в наименовании предохранителя, например ПК-6, ПК-10, ПСН-10, ПСН-35 и т. п.

Установка предохранителя, предназначенного для сети более низкого напряжения, т. е. создание условия Uном пр = Iк.макс т. е. номинальный ток отключения предохранителя по его паспортным данным должен быть больше или равен максимальному значению тока к. з. в месте установки предохранителя. При расчетах токов к. з. следует учитывать подпитку места к. з. электродвигателями.

  • По номинальному току. Номинальный ток предохранителя равен номинальному току заменяемого элемента. Заменяемым, элементом предохранителя с мелкозернистым наполнителем, например типа ПК, считается патрон (один или несколько) с кварцевым песком, плавким.1 элементом, указателем срабатывания или ударным устройством, собранный в заводских условиях.
  • Номинальный ток предохранителей, защищающих силовые трансформаторы на сторонах 10 и 0,4 кВ, выбирается по таблице

    Рекомендуемые значения номинальных токов плавких вставок 1ном вс предохранителей для трехфазных силовых трансформаторов
    6/0,4 и 10/0,4 кВ

    Номинальный ток, А
    Мощность трансформатора, кВ* А трансформатора на стороне плавкой вставки на стороне
    0,4 кВ 6 кВ 10 кВ 0,4 кВ 6 кВ 10 кВ
    25 36 2,40 1,44 40 8 5
    40 58 3,83 2,30 60 10 8
    63 91 6,05 3,64 100 16 10
    100 145 9,60 5,80 150 20 16
    160 231 15,4 9,25 250 32 20
    250 360 24,0 14,40 400 50 40
    400 580 38,3 23,10 600 80 50
    630 910 60,5 36,4 1000 160 80

    Примечание Предполагается, что на стороне 0,4 кВ применены предохранители типа ПН-2, на стороне 6 кВ—типа ПК-6, на стороне 10 кВ—типа ПК-10.

    Предохранители для защиты трансформатора напряжения по стороне ВН

    Трансформаторы напряжения 110 кВ и выше защищают только по стороне низкого напряжения автоматами или предохранителями. Для трансформаторов напряжения 6, 10 и 35 кВ расчет тока для плавкой вставки не производится.

    Предохранитель для защиты трансформатора напряжения по стороне ВН выбирается только по классу напряжения. Для каждого класса напряжения выпускают специальные предохранители типа ПКН (ПН) – 6, 10, 35 (в зависимости от класса напряжения), они применяются исключительно для защиты трансформаторов напряжения.

    Недостатки защиты трансформаторов на предохранителях

    Защита предохранителями конструктивно осуществляется наиболее просто, но имеет недостатки — нестабильность параметров защиты, что может привести к недопустимому увеличению времени срабатывания защиты при некоторых видах внутренних повреждений силовых трансформаторов. При защите предохранителями возникают сложности согласования защит смежных участков сети.

    Видео: Защита трансформаторов ( 1 семестр). Официальный канал ОмГТУ

    Источник

    Проект РЗА

    Сайт о релейной защите и цифровых технологиях в энергетике

    Для любителей предохранителей

    Защита трансформаторов предохранителями

    Многие типы трансформаторов защищаются сегодня предохранителями. Это ТНы, небольшие ТСНы и даже силовые трансформаторы 6(10)/0,4 кВ малой мощности. Дешево, сердито и не нужно ничего настраивать.

    Сегодня я предлагаю вам рассмотреть последствия установки предохранителя на масляный силовой трансформатор 6/0,4 кВ, в части получаемых защитных характеристик (чувствительность и время отключения). Обещаю, будет интересно!

    Возьмем для примера ТП 6/0,4 кВ с трансформаторами 400 кВА. Соединение обмоток естественно D/Yo. Защищать предохранителями трансы Y/Yo – это уже из разряда невероятного, и, вроде, таким никто не занимается.

    Стандартный уровень тока трехфазного короткого замыкания на шинах 6 кВ таких ТП составляет обычно 8-12 кА. Для расчета примем 10 кА.

    Разделять токи на минимальный и максимальный режимы не будем потому, что это не сильно влияет на уровень токов КЗ на стороне 0,4 кВ, особенно за такими маломощными трансформаторами. Среднее напряжение сети 6,3 кВ.

    Расчетная схема приведена на Рис.1

    Расчетная схема предохранитель и трансформатор

    Рис. 1

    Теперь давайте рассмотрим наиболее интересные моменты, касающиеся предохранителей

    1. Времена отключения коротких замыканий

    Найдем номинальный ток трансформатора на стороне 6,3 кВ

    Для любителей предохранителей

    Согласно [1, стр.49] номинальный ток предохранителя 6,3 кВ принимается примерно равным 2*Iном.т

    Для любителей предохранителей

    Принимаем предохранитель ПКТ-6-80, с номинальным током 80А. Его характеристику возьмем из [2, стр. 335]

    Характеристики предохранителей ПКТ для защиты трансформатора 10/0,4 кВ

    Теперь найдем минимальный ток короткого замыкания на шинах 0,4 кВ (конец зоны защиты для ПКТ-6-80), чтобы проверить время отключения предохранителя. Для этого сначала рассчитаем сопротивления схемы.

    1. Сопротивление системы

    Для любителей предохранителей

    2. Сопротивление трансформатора

    Для любителей предохранителей

    3. Отношение сопротивления системы к сопротивлению трансформатора

    Для любителей предохранителей

    С точки зрения проверки чувствительности защиты/времени действия предохранителя критическим является ток однофазного КЗ на выводах 0,4 кВ трансформатора. Найдем этот ток для по кривым из [3, Приложение, Рис. П1]

    Кривые токов КЗ за трансформатором

    Помня про наше соотношение Хс/Хт получаем минимальные токи КЗ через предохранитель (приведенный на сторону 6,3 кВ).

    Металлический однофазный ток КЗ:

    Для любителей предохранителей

    Дуговой однофазный ток КЗ:

    Для любителей предохранителей

    Коэффициент 0,58 появляется из-за искажения тока КЗ при трансформации со стороны 0,4 на 6,3 кВ через обмотки D/Yo (см. видео по защитам трансформатора)

    Ну, и наконец, получаем время отключения этих коротких замыканий по кривой ПКТ-6-80 (см. выше)

    Время отключения металлического КЗ — 1,3 с

    Время отключения дугового КЗ — 7 с

    2. Защита трансформатора от перегрузки

    Максимальный рабочий ток ТМГ-400 с учетом срабатывания АВР на стороне 0,4 кВ (СВ на Рис. 1 включен) примерно равен 1,4*Iном.т

    Для любителей предохранителей

    Ток защиты от перегрузки (ступень на отключение) выбирается обычно на 5% больше максимального рабочего тока присоединения

    Для любителей предохранителей

    3. Согласование с вышестоящими защитами.

    Предположим наша ТП питается от вышестоящей РП 6 кВ через фидер 1 (см. Рис. 2). На фидере 1 установлена защита с независимой характеристикой.

    Согласование релейной защиты с предохранителем

    Рис. 2

    Ориентировочные уставки защиты фидера 1:

    Читайте также:  Почему заземление бьет током в частном доме

    Так как фидер питает одну ТП, то максимальный рабочий ток фидера можно принять равным максимальному рабочему току трансформатора.

    Для любителей предохранителей

    Помним, что такая же уставка МТЗ будет у вводного автомата 0,4 кВ потому, что она тоже отстраивается от максимального рабочего тока трансформатора. Для согласования чувствительности защит примем ток защиты фидера на 10% больше.

    Для любителей предохранителей

    Стандартное время МТЗ защиты фидера на городских ТП примерно 1 с.

    Для любителей предохранителей

    Теперь, используя Гридис-КС, построим карту селективности защиты фидера и нашего предохранителя

    Карта селективности независимая защитная кривая с предохранителем

    Рис. 3

    Как видно из карты защитные кривые пересекаются, причем при минимальных токах КЗ на стороне 0,4 кВ защита фидера будет работать быстрее, неселективно отключая ТП. Изменить эту ситуацию не получится потому, что для этого нужно двигать кривую защиты фидера «вверх и вправо». Вверх нельзя потому, что там уже стоит защита СВ 6 кВ РП со своими выдержками времени, и их менять нельзя. А вправо не получится потому, что мы перестанем резервировать КЗ за трансформатором (минимальный Кч.рез.=1,2)

    Карта селективности зависимая защитная кривая с предохранителем

    Если даже попытаться подобрать зависимую характеристику на фидере, то придется многим пожертвовать. Например, защитой от перегрузки фидера. Она просто исчезнет из-за увеличения начального тока характеристики.

    Рис. 4

    Например, на Рис. 4 подобрана нормально инверсная характеристика с начальным током 240 А, вместо 85,1 А, иначе полной селективности добиться сложно. Можно конечно попробовать подобрать другой наклон и начальный ток кривой, но из графика видно, что оптимально все равно не получиться.

    Есть и еще одна проблема. Как только вы примете на фидере зависимую характеристику защиты, то она перестанет согласовываться с независимой характеристикой СВ и ввода РП.

    Выводы

    1. Предохранитель защищает только от коротких замыканий. Для защиты от перегрузки вам придется искать другие способы (например, вводной автомат 0,4 кВ)

    2. Времена отключения токов КЗ в конце зоны защиты (обмотки и выводы НН
    трансформатора) у предохранителя очень большие. Это увеличивает объем
    повреждения и будет негативно сказываться на сроке службы трансформатора

    3. Предохранитель очень сложно согласовать с вышестоящими защитами. Фактически вы всегда будете нарушать условие селективности

    4. При несимметричных КЗ на стороне 0,4 кВ через предохранители 6 кВ будут
    протекать разные по величине токи. Таким образом, один из предохранителей может сработать раньше остальных и мы получим неполнофазный режим. Данный режим особенно опасен для двигателей.

    Так, что, не использовать предохранители для защиты силовых трансформаторов?

    Я бы сказал, что лучше не использовать, но это мнение релейщика. Для заказчика предохранители — это способ сэкономить и упростить электроустановку, поэтому он их и применяет и будет применять.

    Единственно, что нужно помнить о всех недостатках предохранителей перед
    нормальной релейной защитой и не использовать их для ответственных
    объектов.

    1. «Защита трансформаторов распределительных сетей», М.А. Шабад., 1981 г, Энергоиздат
    2. «Расчеты релейной защиты и автоматики распределительных сетей», М.А. Шабад., 2003 г, ПЭИПК
    3. “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, А.В. Беляев, 1988г., Энергоатомиздат

    Расчет токов КЗ 0,4 кВ в Excel

    Расчет отсечки автомата 0,4 кВ.

    А если учесть еще и возможное отклонение типовой времятоковой кривой предохранителя на 20% [1, стр. 45- 47], то о селективности с вышестоящими защитами вообще можно забыть.

    Да, этот момент еще больше ухудшает положение

    Дмитрий, а как Вы считаете, как радикальное решение: может просто отказаться от селективности защиты ОЛ 6 кВ с предохранителем? Тогда при КЗ вместо случая отсутствия защитного аппарата трансформатора и отключения выключателем от защит ОЛ 6 кВ мы получим неселективное отключение выключателем от защит ОЛ 6 кВ.
    С предохранителем как-то спокойнее – в последнее время качество проектной документации ухудшается, иногда попадаются выполненные расчеты уставок шараж-монтаж организациями после которых волосы дыбом встают. С наладкой тоже в последнее время не все ок. Все хотят быстро и дешево, а про качество забывают.

    P.S. Сам поклонником предохранителей не являюсь. Характеристики подбирать удовольствие не из приятных. А потом еще их от руки в А-каде рисовать. Гридис-КС, что ли приобрести…

    Так вроде селективность с предохранителем сегодня смотрят для минимального КЗ на стороне ВН. Даже у Шабада это где-то было. По-другому не получается. Я думаю, что если защита линии отключает одинаковый объем нагрузки с предохранителем (как в статье), то можно и неселективно работать (еще и плавкую вставку спасем). А вот если отпайки на линии висят — это уже плохо.

    Гридис теперь можно приобрести на компанию, чтобы самому не тратить деньги. Если интересно могу выставить счет

    Когда отпайки на линии висят вообще беда. Были случаи, когда на одной ОЛ висело сразу несколько трансформаторов, при чем разной мощности — от 250 до1600 с разными номиналами предохранителей — там со всеми по селективности не пройдешь — от чего-то отказываться приходилось. На счет приобретения — подумаю. Проблему, я считаю, правильную поднимаете.

    Цитата: «Защищать предохранителями трансы Y/Yo – это уже из разряда невероятного, и, вроде, таким никто не занимается». Хочется спросить автора, а чем же тогда защищают трансы в КТП 10/0,4 кВ в сельских распредсетях? Там их тьма тьмущая и все Y/Yo?

    Думаю, там предохранители стоят больше для красоты потому, что от тех же однофазных за трансом они вообще не защищают. При ПКТ-80 и ТМГ-400 с Y/Yo ток однофазного КЗ будет примерно в 3 раза ниже, чем для D/Yo. Даже с учетом, что коэффициент искажения будет 0,66, а не 0,58 все равно ток на стороне 6,3 кВ будет равен около 120 А. ПКТ-80 отключит такой ток примерно за «никогда».
    Даже если возьмем плавкую вставку как Iном, а не как 2*Iном (обычно там однотрансформаторные ТПшки и перегрузка не допускается), то ПКТ-40 отключит ток в 120 А секунд за 20-30. Скорее всего ПКТ будут защищать только от КЗ на стороне ВН, но так как эти ТПшки обычно никого не волнуют, то их строят по принципу «и так сойдет»
    Мне вообще кажется, что за использование трансов Y/Yo нужно предусматривать административную ответственность) Более гадкого транса придумать сложно

    Проблемы известные. Поэтому защита таких установок подразумевает максимальное снижение вероятности однофазных КЗ в определенной части установки. По сути, отходящие фидера защищены линейными АВ, шины к линейным АВ защищены вводным АВ, сторона ВН находится в зоне защиты линии, так что наименее защищенными остаются обмотка НН, вывода (шпильки) 0,4 кВ, вводной кабель 0,4 кВ и клеммы вводного АВ. Поэтому текущая эксплуатация подразумевает надежное ограждение оголенных частей от попадания посторонних предметов. Таких частей две — шпильки 0,4 на баке (закрываются кожухом) и клеммы вводного АВ (находится в закрытом РШ). Ничего сложного и при ответственном отношении к делу, проблем особых нет. А будет простая и дешевая альтернатива ПКТ, тогда и … а будет ли?

    Да,действительно Y/Yo это «чудо».Сам живу в сельской местности,почти в конце линии, рядом родительский двор, зимой у меня в розетке 260-270в. у родителей 170-180в питаемся по разным фазам. Но ТОЭ гласят что в трехфазной четырехпроводной сети нейтральный провод обеспечивает симметрию ФАЗНЫХ напряжений приемника при несимметричной нагрузке! Звоню в местный РЭС говорю диспетчеру что напряжение высокое, ответ -«Да это у тебя ноль слабенький,проверь его». У меня одни восклицательные знаки. … Ну да ладно думаю пройдусь по линии до ТП,может где ноль оборвался? Дошел до ТП все в порядке! Замерил токи на ТП по фазам и в нейтрали на стороне 0,4кв, получилось ф А-20 А,ф В-43 А, ф С-76 А, Io-37А. Uл 410-400-410 в. Uф-280-220-240в. Ток в контуре 1,8 А. Стою голову ломаю,картинка с определением из учебника электротехники в голове.На работе с ребятами инженерами пообщался,-«Да это просто ваша ТП слабая, или контур сгнил вот и косит». А почему ток в контуре, и нулевой проводник так нагружен. … И только от Дмитрия из «Курса защит трансформаторов 10/0,4кв» узнал об особенностях трансформаторов Y/Yo. Так же В журнале «Новости Электротехники» 6 (60) 2009 года,есть интересная статья А.Федоровской и В.Фишмана «Силовые трансформаторы 6(10)/0,4кв. Особенности применения различных схем соединения обмоток». Интересная таблица 1. как раз по поводу предохранителей, и упоминается о трансформаторах Y/Yo,

    про слабый ноль — это разговоры в пользу бедных.. Y/Yo дает перекосы напряжения при несимметричной нагрузке на стороне 0,4 кВ, а на стороне 0,4 кВ всегда несимметричная нагрузка.. жуткие трансы — качество ЭЭ отстой, защиту нормально не выбрать и в чем преимущество перед D/Yo я так и не понял (стоят они кстати одинаково).. самое смешное, что некоторые заводы (Козлова, например) стали делать симметрирующую обмотку для Y/Yo, но только он тогда стоит дороже

    Типовая ситуация. Нейтральный проводник служит прежде всего для получения напряжения 220 В, а его симметрирующие свойства зависят от его сопротивления. Но даже при его нулевом сопротивлении не будет идеальной симметрии, поскольку при несимметричной нагрузке возникают несимметричные потери напряжения в фазных проводниках. Схема соединения обмоток Y/Yo применяется повсеместно, и не только в сельских сетях. В городских сетях большинство таких трансформаторов. Это наиболее дешевые в производстве и эксплуатации трансформаторы. При применении таких трансформаторов о качестве электроэнергии не может быть и речи, поскольку трансформаторы очень чувствительны к несимметричной нагрузке фаз из-за большого сопротивления нулевой последовательности. Статистика измерений напряжений в сельских сетях свидетельствует о большом разбросе напряжений по фазам. И это реальность. Экономия средств на трансформаторы со схемами D/Yo и Y/Z и нулевые проводники с сечением, равным фазному, приводит к низкому качеству напряжения.

    Я в силу своего молодого опыта думал что предохранители остались только в цепях постоянного тока и на 0,4 кВ, а в защитах высоковольтных линий (6-10 кВ) от них давно отказались, не ужели их до сих пор используют?

    Вот предохранитель ПСН-35. До сих пор используется для защиты тр-ров 35 кВ на о-очень упрощенных ПС

    вон оно как, благодарю)

    Узость восприятия мира характеризуется отсутствием познавать большее.

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

    Источник

    Токи плавких вставок для защиты трансформаторов

    Трансформаторы 10/0,4 кВ в сельских и городских распределительных электрических сетях мощностью до 0,63 MB -А включительно, как правило, защищают­ся плавкими предохранителями на стороне 10 кВ и весьма часто также плавкими предохранителями на стороне 0,4 кВ. Возможно и такое сочетание, как пре­дохранители на стороне 10 кВ и автоматические вы­ключатели на стороне 0,4 кВ (§ 5). На стороне ВН трансформаторов закрытых подстанций (ЗТП) плав­кие предохранители применяются в сочетании с вы­ключателями нагрузки (ВНП) — разъединителями с автоматическим приводом, которые отключаются при срабатывании плавкого предохранителя хотя бы на одной из фаз.

    Читайте также:  Емкостной трансформатор тока напряжения

    Плавким предохранителем называется коммута­ционный аппарат, предназначенный для отключения защищаемой цепи посредством расплавления специ­альных токоведущих частей (плавких вставок) под воздействием тока, превышающего определенное значение, с последующим гашением возникающей элек­трической дуги.

    Принцип действия и виды плавких предохрани­телей. Плавкий предохранитель как защитный аппа­рат применяется в электрических сетях уже более 100 лет. В основе его работы лежит известный закон Джоуля — Ленца (1841 г.), согласно которому про­хождение электрического тока по проводнику сопро­вождается выделением теплоты Q (в джоулях):

    где I — ток, проходящий по проводнику, A , R сопро­тивление проводника, Ом; t время прохождения тока, с; а—коэффициент пропорциональности.

    Плавкая вставка предохранителя является участ­ком защищаемой электрической цепи, имеющим мень­шее сечение и большее сопротивление R , чем осталь­ные элементы этой цепи. Поэтому при прохождении по цепи тока КЗ плавкая вставка нагревается сильнее других элементов защищаемой цепи, раньше расплав­ляется и тем самым спасает электрическую установку от перегрева и разрушения. Но для прекращения про­хождения тока КЗ, т. е. отключения электрической установки от питающей электросети, недостаточно расплавления вставки, необходимо еще погасить воз­никшую в этом месте электрическую дугу. Быстрое га­шение дуги является важнейшей задачей плавкого предохранителя. По способу гашения электрической дуги плавкие предохранители, применяемые для за­щиты трансформаторов, делятся на две основные группы:

    предохранители с трубками из газогенерирующего материала (фибры или винипласта), который обильно выделяет газы при высокой температуре горения элек­трической дуги; возникающие в этот момент высокое давление (в предохранителях типа ПР напряжением до 1000 В) или продольное дутье (в предохранителях ПСН напряжением выше 1000 В) обеспечивают бы­строе гашение электрической дуги;

    предохранители с наполнителем (кварцевым пе­ском), в которых электрическая дуга гасится в ка­нале малого диаметра, образованном телом испа­рившейся плавкой вставки, между крупинками (гра­нулами) кварцевого песка; такие предохранители обычно называют кварцевыми.

    На стороне 10 кВ трансформаторов устанавли­ваются главным образом кварцевые предохранители типа ПК, на стороне 0,4 кВ — также преимущественно кварцевые типа ПН-2, Кварцевые предохранители имеют несколько важных положительных свойств: они обладают токоогранпчивающсй способностью (благо­даря очень быстрому гашению электрической дуги ток КЗ не успевает достичь своего максимального ампли­тудного значения); плавкие вставки защищены от воз­действия внешней среды кварцевым песком и герме­тично закрытой фарфоровой трубкой, благодаря чему они длительное время не стареют и не требуют за­мены; конструктивное исполнение предохранителей ПК и ПН-2 предусматривает сигнализацию срабаты­вания, причем контакты сигнального устройства могут давать команду на отключение трехфазного выключа­теля нагрузки, что предотвращает возможность неполнофазного режима работы трансформатора. При ис­пользовании кварцевых предохранителей заводского изготовления с правильно выбранными параметрами, как правило, можно обеспечить селективность между предохранителями на сторонах ВН и НН трансфор­матора или, по крайней мере, между предохраните­лями на стороне ВН трансформатора и защитными аппаратами на отходящих линиях НН, т. е. не допу­скать отключения трансформатора от питающей сети при КЗ на шинах НН или на любой из отходящих линий НН. Выбор параметров предохранителей рас­сматривается далее.

    Положительные свойства кварцевых предохрани­телей наряду с их небольшой стоимостью и простотой обслуживания (при наличии необходимого запаса пре­дохранителей заводского изготовления) обеспечили массовое применение этих электрических аппаратов для защиты трансформаторов 10 кВ, несмотря на та­кой важный недостаток плавких предохранителей, как малая чувствительность к токам при перегрузках и удаленных КЗ, особенно однофазных КЗ на землю в сети 0,4 кВ. В последние годы для устранения этого недостатка на стороне 0,4 кВ трансформаторных под­станций КТП 10/0,4 кВ применяют новую защиту типа ЗТИ-0,4, которая с высокой чувствительностью реагирует на все виды КЗ и быстро отключает по­врежденную линию 0,4 кВ. Устройстве защиты типа ЗТИ-0,4 выпускает ПО «Энергоавтоматика» Минэнерго СССР.

    Рис. 7. Патрон плавкого предохранителя 0,4 кВ типа ПН-2 (а) и защитные характеристики этого предохранителя (б)

    Нельзя использовать для защиты трансформаторов самодельные плавкие вставки, некондиционный квар­цевый песок (с повышенной влажностью, с недопу­стимо крупными или очень мелкими крупинками — гранулами), незакрытые фарфоровые трубки и т. п., поскольку это вызовет либо излишнее, неселективное отключение трансформатора и погашение всей под­станции при КЗ на одной из отходящих линий 0,4 кВ, либо отказ (несрабатывание) предохранителей 10 кВ при КЗ на стороне ВН трансформатора, что приведет к отключению питающей линии 10 кВ и погашению нескольких подстанций. Следует помнить, что заменяе­мым элементом предохранителя считается не плавкая вставка, а патрон (один или несколько) с кварцевым песком, плавким элементом (вставкой), указателем срабатывания или ударным устройством, собранный в заводских условиях.

    Устройство и характеристики кварцевых предо­хранителей типа ПН-2. На рис. 7, а схематично по­казан патрон предохранителя типа ПН-2 (в разрезе). Патрон представляет собой квадратную снаружи и круглую внутри фарфоровую трубку 5, заполненную сухим чистым кварцевым песком 4. В трубке размещены элементы плавкой вставки 3, выполненные штам­повкой из медной ленты с напаями из олова (уско­ряющими расплавление меди при небольших значе­ниях тока КЗ). Плавкая вставка приваривается или припаивается оловом к шайбам контактных ножей /, которые крепятся винтами к крышкам 2. Для герме­тизации патрона под крышками устанавливаются асбестовые прокладки. Предохранители ПН-2 имеют высокую Механическую прочность и используются в блоке рубильник — предохранитель в качестве ком­мутационного и защитного аппарата.

    Полное обозначение предохранителя состоит из де­сяти знаков, например ПН-2-100-12-УЗ. Буквы озна­чают, что предохранитель неразборный, цифра 2 — номер серии, 100 — номинальный ток предохранителя (выпускаются предохранители с номинальными то­ками 100, 250, 400, 600 А); следующие цифры инфор­мируют о виде присоединения проводников (1—пе­реднее, 2 — заднее) и о наличии указателя срабаты­вания (0 — без указателя, 1 —с указателем, 2 — с ука­зателем и замыкающим контактом, 3 — с указателем и размыкающим контактом); затем указываются кли­матическое исполнение (У — для умеренного климата, ХЛ — холодного, Т — тропического) и категория раз­мещения оборудования в соответствии с ГОСТ 15150— 69, так же как для трансформаторов (§ 1). Номи­нальные токи предохранителей ПН-2 и их плавких вставок указываются в заводских каталогах. Время-токовые (защитные) характеристики предохранителей типа ПН-2 показаны на рис. 7,6

    Устройство и характеристики кварцевых предо­хранителей типа ПК. На рис. 8, а схематично пока­зан патрон кварцевого предохранителя типа ПК, ко­торый состоит из фарфоровой или стеклянной трубки 5, армированной с помощью цемента 3 контактными колпачками 2. В трубке находится плавкая вставка 4, которая состоит из нескольких посеребренных медных проводов, выполненных в виде растянутой спирали и имеющих несколько ступеней разного сечения (разде­ление вставки на несколько проводов облегчает гаше­ние электрической дуги, возникающей одновременно в нескольких каналах). Трубка заполнена чистым су­хим кварцевым песком и герметически закрыта крыш­ками /. Внутри размещена также нихромовая прово­лока 6, соединенная с указателем срабатывания 7. Проволока сгорает одновременно с плавкими встав­ками и освобождает указатель 7, который выталки­вается вниз специальной пружиной.

    Полное обозначение кварцевого токоограничивающего предохранителя для защиты трансформаторов состоит из одиннадцати знаков, например ПКТ-102-10-40-31,5-УЗ: буквы обозначают, что предохранитель кварцевый для защиты силовых трансформаторов (и линий), цифра 1 — наличие ударного устройства легкого типа (0 — отсутствие такого устройства); сле­дующие две цифры характеризуют конструктивные особенности и габаритные размеры, например: если третья цифра 1 или 2, то предохранитель состоит из одного патрона (на каждой фазе), если 3, — то со­стоит из двух жестко связанных между собой пат­ронов, если 4, — из четырех попарно жестко связан­ных патронов. Через дефис далее указывается номи­нальное напряжение в киловольтах (10 кВ), затем номинальный ток предохранителя, равный номиналь­ному току плавкой вставки (40 А) и номинальный ток отключения (/Н0м. о = 31,5 А для данного примера), а также климатическое исполнение и категория разме­щения (так же, как для силовых трансформаторов, буква У обозначает, что аппарат предназначен для умеренного климата, а цифра 3 — для закрытых по­мещений с естественной вентиляцией). Предохрани­тели ПКТ-101 изготавливаются для умеренного кли­мата также категории 1, т. е. для работы на открытом воздухе, остальные — только для закрытых помеще­ний с естественной вентиляцией. Основные техниче­ские данные предохранителей ПКТ приведены в ка­талоге «Электротехника СССР» 02.50.02-82 (1983 г.). На рис. 8, б и в показаны время-токовыс характери­стики предохранителей типа ПКТ для класса напря­жения 10 кВ из этого каталога. Ток, соответствую­щий началу сплошной части времятоковой характе­ристики, называется минимальным током отключения. Это означает, что при токах КЗ, меньших, чем мини­мальный ток отключения, завод-изготовитель не га­рантирует гашение электрической дуги, возникшей после расплавления плавких вставок предохранителя. Однако это не является большим недостатком, если на питающей линии 10 кВ имеется устройство АПВ. За время бестоковой паузы, наступившей после от­ключения питающей линии и до момента ее повтор ного включения, электрическая дуга в предохрани­телях погаснет, трансформатор отключится от питаю­щей линии и ее АПВ будет успешным.

    Наряду с отечественными кварцевыми предохра­нителями типа ПКТ для защиты трансформаторов 10 кВ могут использоваться предохранители зарубеж­ных фирм, например типа НН югославского предприя­тия «Механика» (изготавливаются по лицензии ФРГ), типа HS серии 3-30 предприятия «Трансформаторенверк» имени Карла Либкнехта в ГДР и др. Характе­ристики некоторых из них приведены в работе (8).

    Выбор плавких предохранителей для защиты трансформаторов 10/0,4 кВ. Выбор номинальных на­пряжений в этой книге уже сделан: на стороне ВН — 10 кВ, на стороне НН — 0,4 кВ. Необходимо выбрать значения номинального тока отключения /Ном. о и но­минального тока предохранителя. Для предохраните­лей типа ПКТ номинальный ток предохранителя равен номинальному току заменяемого элемента, и в том числе плавкой вставки. При необходимости после вы­бора этих номинальных токов производится проверка селективности работы защитных аппаратов, последо­вательно включенных в защищаемой электрической сети.

    Выбор предохранителей по номинальному току от­ключения производится по выражению

    где I к. max — максимальное значение тока при КЗ в месте установки предохранителя (§ 2).

    Предохранители ПКТ-10 выпускаются с номиналь­ными токами отключения от 12,5 до 31,5 кА, что, как правило, позволяет выполнить условие (13). Напри­мер, трансформатор 10/0,4 кВ, защищаемый предохра­нителями типа ПКТ-103-10-80-20УЗ, по этому условию может быть практически всегда включен вблизи пи­тающей подстанции с трансформатором 110/10 кВ мощностью до 40 МВ-А включительно ( I к.мах.≤ ^ 20 кА). Предохранители типа ПН-2 рассчитаны на отклонение токов КЗ не более 25 кА при напряжении 0,4 кВ. Максимальное значение тока при трехфазном КЗ за наиболее мощным трансформатором 10/0,4 кВ, который еще, как правило, защищается плавкими предохранителями, т. е. мощностью 0,63 MB -А, равно 16,5 кА (см. табл. 2), что меньше, чем 25 кА.

    Рис. 9. Рекомендуемые значения номи­нальных токов плавких предохраните­лей на сторонах ВН и НН понижающего трансформатора 10/0,4 кВ при его ра­боте с номинальной нагрузкой

    Читайте также:  Игрушка которая бьет током

    Номинальный ток предохра­нителей (плавких вставок) типа ПКТ и ПН-2 выбирается из усло­вий несрабатывания при допустимых перегрузках трансформатора и при работе трансформа­тора в режиме холостого хода (отстройка от бросков тока на­магничивания, которые в тече­ние небольшого промежутка времени могут в не­сколько раз превосходить номинальный ток транс­форматора), а также из условий селективности по отношению к другим защитным аппаратам и их между собой и из условия обеспечения не­обходимой чувствительности к токам КЗ в основной зоне и в зонах дальнего резервирования. На основа­нии многолетнего опыта обслуживания электроуста­новок директивные материалы Минэнерго СССР ре­комендуют выбирать номинальные токи предохрани­телей (плавких вставок) следующими (рис. 9):

    — на стороне НН, при условии, что трансформатор работает без длительных перегрузок. В этих случаях предохранители на стороне НН защищают трансфор­матор от перегрузок и резервируют защитные аппа­раты отходящих линий НН при КЗ в сети этого на­пряжения. Предохранители на стороне ВН защищают трансформатор только от КЗ на его выводах ВН и частично — от внутренних повреждений. Рекомендуе­мые значения номинальных токов плавких предохра­нителей (и их заменяемых элементов) для защиты трансформаторов 10/0,4 кВ приведены в табл. 5. При выбранных по этой таблице номинальных токах обес­печиваются все условия выбора плавких предохрани­телей, в том числе и селективность между предохра­нителями ПКТ-10 и ПН-2 при КЗ на шинах 0,4 кВ.

    Таблица 5. Рекомендуемые значения номинальных токов плавких предохранителей (и их заменяемых элементов)для защиты трехфазных силовых трансформаторов 10/0,4 кВ.

    Источник

    

    Особенности применения и срабатывания разных защит трансформатора

    Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

    Основные защиты трансформатора

    БлинкерЛюбая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

    Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

    1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
    2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
    3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
    4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
    5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
    6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

    Защита трансформатора дифференциальная

    Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

    1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
    2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
    3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
    4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

    Дифф защита

    Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

    На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

    Принцип действия газовой защиты трансформаторов

    Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

    В специальном окошке при выделении газов можно увидеть пузырьки.

    Окошко трансформатораРеле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

    Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

    Транфсорматор

    Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

    Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

    Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

    Максимальная токовая защита трансформатора

    Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

    Для трансформаторов выбор предохранителей осуществляется из такого соотношения

    формула

    Iвс — ток плавкой вставки предохранителя;

    Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

    Предохранитель — самый простой способ защитить трансформатор от превышения тока.

    МТЗ защита

    Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

    Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

    Схема 2

    Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

    Защита печных трансформаторов

    Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

    В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

    Источник