Меню

Токи во всех ветвях схемы 2 показания вольтметров

Расчет разветвленной линейной электрической цепи постоянного тока с несколькими источниками электрической энергии

Для электрической цепи рис. 1, выполнить следующее:

  1. Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать эту систему уравнений не следует.
  2. Определить токи в ветвях методом контурных токов.
  3. Построить потенциальную диаграмму для любого замкнутого контура, содержащего обе ЭДС.
  4. Определить режимы работы активных элементов и составить баланс мощностей.

Значения ЭДС источников и сопротивлений приемников:
E1 = 130 В, Е2 = 110 В, R1 = 4 Ом, R2 = 8 Ом, R3 = 21 Ом, R4 = 16 Ом, R5 = 19 Ом, R6 = 16 Ом.

Смотрите также
Пример решения схемы методом контурных токов № 1
Пример решения схемы методом контурных токов № 2
Пример решения схемы методом контурных токов № 3
Пример решения схемы методом контурных токов № 4
Пример решения схемы методом контурных токов № 5
Посмотреть видео «Метод контурных токов 2» (пример решения конкретной задачи)

1. Произвольно расставим направления токов в ветвях цепи, примем направления обхода контуров (против часовой стрелки), обозначим узлы.


Рис. 2

2. Для получения системы уравнений по законам Кирхгофа для расчета токов в ветвях цепи составим по 1-му закону Кирхгофа 3 уравнения (на 1 меньше числа узлов в цепи) для узлов 1,2,3:

По второму закону Кирхгофа составим m – (р – 1) уравнений (где m – кол-во ветвей, р – кол-во узлов ), т.е. 6 – (4 – 1) = 3 для контуров I11, I22, I33:

Токи и напряжения совпадающие с принятым направлением обхода с «+», несовпадающие с «-».
Т.е. полная система уравнений для нашей цепи, составленная по законам Кирхгофа:

3. Определим токи в ветвях методом контурных токов. Зададимся направлениями течения контурных токов в каждом контуре схемы и обозначим их I11, I22, I33 (см. рис. 2)

4. Определим собственные сопротивления трех контуров нашей цепи, а так же взаимное сопротивление контуров:

5. Составим систему уравнений для двух контуров нашей цепи:

Подставим числовые значения и решим.

(А)
(А)
(А)

Определим фактические токи в ветвях цепи:
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным
(А) направление тока потивоположно выбранному
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным

6. Проверим баланс мощностей:

(ВА)
Небольшая разница в полученных результатах является результатом погрешности при округлении числовых значений токов и сопротивлений.

7. Построим потенциальную диаграмму контура изображенного на рис. 3. В качестве начальной точки примем узел 1.

Рис.3

Для построения потенциальной диаграммы определим падения напряжения на каждом сопротивлении, входящем в выбранный контур.
(В)
(В)
(В)
(В)
Потенциал увеличивается если обход осуществляется против направления тока, и понижается если направление обхода совпадает с направлением тока. На участке с ЭДС потенциал изменяется на величину ЭДС. Потенциал повышается в том случае, когда переход от одной точки к другой осуществляется по направлению ЭДС и понижается когда переход осуществляется против направления ЭДС.

Рис. 4. Потенциальная диаграмма. ЗАКАЗАТЬ РАБОТУ!

Источник

Токи во всех ветвях схемы 2 показания вольтметров

Решение онлайн Контрольной работы Электрические цепи синусоидального тока

Контрольная работа № 2 Электрические цепи синусоидального тока

1 Определить ток на индуктивном элементе схемы. Построить диаграмму токов, из которой графически определить ток через сопротивление R. Прокомментируйте результат. Какое явление наблюдается в схеме и каково условие его возникновения?

2 Определить полную комплексную мощность и начертить эквивалентную схему замещения.

3 По виду осциллограмм синусоид написать выражения мгновенных значении тока и напряжения, а также выражения векторов действующих значений.

Расчет электрической цепи постоянного тока методом контурных токов

Расчет электрической цепи постоянного тока методом контурных токов

Расчет электрической цепи постоянного тока методом контурных токов

Для электрической цепи, изображенной на рисунке 1, по заданным сопротивлениям и ЭДС выполнить следующее:

1) составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;

2) найти все токи, пользуясь методом контурных токов;

3) составить баланс мощностей для заданной схемы.

РГР Расчет цепи постоянного тока УГТУ Ухта

РГР Расчет цепи постоянного тока УГТУ Ухта

Старцев, А.Э. Анализ цепи постоянного тока: методические указания / А.Э. Старцев. – Ухта: УГТУ, 2006

Методические указания предназначены для самостоятельного выполнения расчетно-графической работы по электротехнике для студентов специальности 230102 «Автоматизированные системы обработки информации и управления» (АИС).

Методические указания содержат задания на выполнение работы по анализу цепи постоянного тока.

РГР Расчет цепи постоянного тока

Для электрической схемы, изображенной на рис. 2.13, выполнить следующее:

1 Упростить схему, заменив последовательно и параллельно соединенные резисторы ветвей эквивалентными. Дальнейший расчет вести для упрощенной схемы.

2 Составить на основании законов Кирхгофа систему уравнений для расчета токов во всех ветвях схемы.

2.3 Определить токи во всех ветвях схемы методом контурных токов.

2.4 Определить ток в заданной по условию ветви (номер ветви указан в таблице 1), используя метод эквивалентного генератора.

2.5 Начертить потенциальную диаграмму для внешнего контура.

Скачать Старцев, А.Э. Анализ цепи постоянного тока: методические указания / А.Э. Старцев. – Ухта: УГТУ, 2006

Решение задачи Простые цепи постоянного тока САФУ

Решение задачи Простые цепи постоянного тока САФУ

САФУ им. Ломоносова

Решить задачу на тему Простые цепи постоянного тока

Для электрической цепи постоянного тока, составленной из резистивных элементов, дана схема, изображенная на рисунке 2.15, по заданным параметрам рассчитать:

1) Токи во всех ветвях схемы.

2) Падение напряжений на каждом из резисторов.

3) Мощность, развиваемую источником энергии (Pист) и мощность рассеиваемую на нагрузке (Pнагр).

Читайте также:  Таблица проводки сечение по току

4) Проверить правильность решения методом баланса мощностей.

АГЗ МЧС РГР-2 Расчёт линейных цепей однофазного синусоидального тока

АГЗ МЧС РГР-2 Расчёт линейных цепей однофазного синусоидального тока

Расчётно-графическая работа №2 Расчёт линейных цепей однофазного синусоидального тока

Задание 2.1 Электрическая цепь с одним источником энергии

Для электрических схем, изображенных на рисунках 2.1.1 – 2.1.40, по заданным в таблице 2.1.2 параметрам и ЭДС источника определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов и потенциальную диаграмму напряжений по внешнему контуру. Определить показание вольтметра и активную мощность, показываемую ваттметром.

Скачать решение РГР-2 Расчёт линейных цепей однофазного синусоидального тока

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Задание 1 Расчёт линейных цепей постоянного тока

Для электрической схемы, изображенной на рисунках 1.1 – 1.50, по заданным в таблице 1.2 сопротивлением и ЭДС выполнить следующее:

  1. Составить систему уравнений, необходимых для определения токов по первому и второму правилам Кирхгофа.
  2. Найти и вычислить все токи, пользуясь методом контурных токов (решения провести с помощью составления матрицы для системы уравнений и определителей).
  3. Проверить правильность решения, применив метод узлового напряжения, предварительно упростить схему, заменив треугольник сопротивлений r4, r5 и r6 эквивалентной звездой. Начертить расчётную схему с эквивалентной звездой и показать на ней токи.
  4. Определить ток в резисторе r6 методом эквивалентного генератора.
  5. Определить показание вольтметра и составить баланс мощностей для заданной схемы.
  6. Построить в масштабе потенциальную диаграмму для внешнего контура.

Скачать решение варианта Задания 1 Расчёт линейных цепей постоянного тока

Метод контурных токов в цепи с источниками токов

Метод контурных токов в цепи с источниками токов

Алгоритм метода контурных токов в цепи с источниками токов

  1. Задаются направлением токов ветвей и обозначают их на схеме.
  2. Строят контурные токи, проходящие через источники тока. Величина каждого такого контурного тока известна и равна току источника тока, через который проходит данный контурный ток (строим контурные токи так, что через источник тока проходит только один контурный ток!).
  3. Определяют независимые контуры и их нумеруют. Независимые контуры, для которых составляются уравнения метода контурных токов, можно определить, если мысленно удалить источники тока (в нашем случае остается один независимый контур!).
  4. Выбирают направление контурных токов (целесообразно в одну сторону) и составляют уравнения по методу контурных токов, обходя каждый контур в направлении его контурного тока.
  5. Полученную систему алгебраических уравнений решают относительно неизвестных контурных токов.
  6. Искомые токи по методу контурных токов находят как алгебраическую сумму контурных токов, проходящих по данной ветви. Токи в ветвях связи равны контурным токам.

Решение ИДЗ-2 Расчет однофазных цепей синусоидального тока МИФИ

Решение ИДЗ-2 Расчет однофазных цепей синусоидального тока МИФИ

ФГБОУ ВПО НИЯУ МИФИ Озерский технологический институт – филиал НИЯУ МИФИ

Домашнее задание по электротехнике №2

Расчет однофазных цепей синусоидального тока

Для заданной цепи синусоидального тока (f = 50 Гц), в соответствии с вариантом, определить:

  1. Токи во всех ветвях цепи и напряжения на отдельных участках (элементах).
  2. Показание вольтметра, активную (показание ваттметра) и реактивную мощности источника ЭДС.
  3. Построить в масштабе на комплексной плоскости векторную диаграмму токов и напряжений.
  4. Составить баланс активных и реактивных мощностей.

Скачать Решение варианта Расчет однофазных цепей синусоидального тока МИФИ

Решение варианта ИДЗ-1 Линейные электрические цепи постоянного тока МИФИ

Решение варианта ИДЗ №1 Линейные электрические цепи постоянного тока МИФИ

ФГБОУ ВПО НИЯУ МИФИ Озерский технологический институт – филиал НИЯУ МИФИ

Домашнее задание по электротехнике №1

Линейные электрические цепи постоянного тока

Для электрической схемы, в соответствии с вариантом, по заданным сопротивлениям и ЭДС выполнить следующее:

1. Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа.

2. Найти все токи, пользуясь методом контурных токов.

3. Проверить правильность решения, применив метод узловых потенциалов, предварительно упростив схему, заменив треугольник сопротивлений R4, R5, R6 эквивалентной звездой. Начертить расчетную схему с эквивалентной звездой и показать на ней токи.

4. Определить ток в резисторе R6 методом эквивалентного генератора.

5. Определить показание вольтметра и составить баланс мощностей для заданной схемы

Скачать Решение варианта ИДЗ №1 Линейные электрические цепи постоянного тока МИФИ

Заряд RC на постоянное напряжение

Переходной процесс в цепи с емкостью и сопротивлением при включении ее на постоянное напряжение

Переходной процесс в цепи с емкостью и сопротивлением при включении ее на постоянное напряжение

Процесс перехода электрической цепи от одного установившегося режима к другому называется переходным процессом. Примерами переходных процессов являются включение и выключение цепи, замыкание электрической цепи накоротко, изменение ее параметров. Переходные процессы не могут произойти мгновенно, как не могут возникнуть и исчезнуть мгновенно электрические и магнитные поля.

При включении конденсатора на постоянное напряжение в цепи возникает переходной электрический ток, пластины конденсатора начинают заряжаться.

Источник

Определить Токи Электрической Схемы

Подставив 1.


Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников рис.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Известны величины сопротивлений и ЭДС, необходимо определить токи.
Как научиться читать электрические схемы

Для исходной схемы своего варианта, см.

Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис.

Выберем три независимых контура и укажем направления обхода контуров. В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Дальнейший расчет п.

На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями. Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

RL ЦЕПЬ │Теория и задача │Переменный ток

Читайте также:  Как узнать силу тока зная только напряжение

Рассчитайте схему цепи

Так как ток обоих участков цепи одинаков, а сумма напряжений на элементах равна приложенному рис. Приступаем к основному этапу — составлению системы уравнений контурных токов. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников рис.

Выберем три независимых контура и укажем направления обхода контуров.

Линейные электрические цепи постоянного тока Для электрической схемы, соответствующей номеру варианта и изображенной на рис.

Задача 1. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Последовательное соединение нелинейных элементов.

Результаты расчета токов, проведенного двумя методами, свести в таблицу и сравнить между собой. Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток в данной схеме имеем 3 таких контура.

Пользуясь характеристиками рис. При этом на нагрузке выделится активная мощность 1.
Как читать электрические схемы. Урок №6

Основные понятия

Рассмотрим пример. В заданной схеме, см.

Токи в резисторах В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю. Выполняем все поэтапно.

В табл.

Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.

Пусть, например, задана величина приложенного к току напряжения U и требуется определить ток в цепи и распределение напряжений на ее участках. Последовательное соединение нелинейных элементов. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.

Примеры решения задач на законы Кирхгофа


В схеме рис. После проведенных преобразований рис.

Приступаем к основному этапу — составлению системы уравнений контурных токов. Про комплексные числа можно подробнее прочитать на нашем сайте. Определим параметры электрической цепи рис. Уравнения по второму закону составляют для независимых контуров. Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур.

Система уравнений 4. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. Запишем уравнения:: 4. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Переменный ток.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.

Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.

Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

Определить токи во всех ветвях схемы на основании метода наложения.

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.

Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке.
Законы Кирхгофа — Теория и задача

Источник



Составление системы уравнений, необходимых для определения токов по первому и второму законам Кирхгофа. Нахождение токов, используя метод контурных токов

Страницы работы

Содержание работы

Контрольная работа №1.

Читайте также:  Бросок тока при включении конденсатора

Дана схема электрической цепи

Везде в контрольной работе единицы измерения ЭДС и напряжения – В, сопротивления – Ом, проводимости – См, сопротивление вольтметра принимается равным бесконечности. Расчеты производятся в математическом пакете MathCad.

1) Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа.

Произвольно покажем направления токов во всех ветвях:

Составим 3 уравнения по 1 закону Кирхгофа (всего n=4 узла)

Всего ветвей: m=6, значит составим m-(n-1)=3 недостающих уравнения по 2 закону Кирхгофа. Обход контуров выберем по часовой стрелке.

С помощью (1) и (2) можно найти решения для всех токов цепи.

2) Найти все токи, пользуясь методом контурных токов.

Направление обхода контурных токов внутри существующих ячеек обозначено на рис.1.

Для каждого контура-ячейки составим уравнение по второму закону Кирхгофа

(Iк – контурные токи)

Решая данную систему, находим контурные токи:

Токи во внутренних ветвях схемы определяются как сумма или разность соответствующих контурных токов. Токи во внешних ветвях схемы равны контурным.

По знаку видно, что I6 должен быть направлен в другую сторону (в дальнейших расчетах I6>0)

3) Предварительно упростив схему, заменив треугольник сопротивлений R4, R5, R6 эквивалентной схемой, начертить расчетную схему с эквивалентной звездой и показать на ней токи. Проверить правильность решения предыдущего пункта, применив метод узлового напряжения.

Полученная схема с токами после преобразований показана на рис.2.

Применим метод узлового напряжения между узлами а и b:

где G1, G2, G3 – сопротивления соответствующих ветвей:

Найдем токи в ветвях по закону Ома:

Полученные значения токов совпадают с токами, найденными в п.2.

4) Определить ток в резисторе R6 методом эквивалентного генератора.

Определим напряжение холостого хода Ucd на резисторе R6, для этого воспользуемся формулой узлового напряжения для узлов а и b:

Воспользуемся законом Ома для определения частных напряжений:

Определим эквивалентное сопротивление Rэк cd. Схема в этом случае принимает вид, показанный на рис.4а. Для нахождения общего сопротивления, преобразуем треугольники acb в звезду (рис 4б), тогда:

Общее эквивалентное сопротивление цепи:

Ток I6 в резисторе R6 находится по формуле эквивалентного генератора:

Как видим, данное значение тока совпадает со значением, найденным в п.2, что свидетельствует о правильности решения.

5) Определить показания вольтметра и составить баланс мощностей для заданной схемы.

Показания вольтметра можно определить по закону Ома:

Уравнение баланса отражает равенство мощностей, отдаваемой источником (Ри) и расходуемой приемниками (Рп), т.е.

Ри= Рп, следовательно баланс мощностей соблюдается, задача решена верно.

6) Построить в масштабе потенциальную диаграмму для внешнего контура.

Потенциальной диаграммой называется график распределений потенциалов вдоль какого-либо контура. Потенциальную диаграмму строят как зависимость (потенциалов от сопротивления). Обозначения узлов см. на рис.5. За нулевой потенциал принимаем точку d. Найдем значения потенциалов других узлов (обход внешнего контура по часовой стрелке):

Учет знака выбирался из правил: ток течет от большего потенциала к меньшему, наращивание потенциала за счет ЭДС соответствует знаку источника, подключенного к измеряемой точке.

Построим потенциальную диаграмму:

Диаграмма начинается и заканчивается с потенциалом , потенциалы посчитаны правильно.

Дана электрическая схема.

Переведем исходные данные: 300мкФ=3·10 -4 Ф; 19.1мГн=1,91·10 -2 Гн; 15.9мГн=1,59·10 -2 Гн; 31.8мГн=3,18·10 -2 Гн

1) Определить токи во всех ветвях цепи и напряжения на отдельных участках. Определить показание вольтметра.

Определим комплексные сопротивления ветвей:

где — угловая частота

Полное комплексное сопротивление:

Начальная фаза ЭДС Е принимается равной нулю, поэтому комплексная составляющая равна нулю:

Ток в неразветвленной части цепи:

Токи в параллельных цепях находятся по соотношениям:

=1,93-1,66j=2,54e -40°38′ j А

=0,77+1,01j=1,27e 52°54′ j А

Напряжения на отдельных участках:

=111,72-9,65j=112,14e -4°56′ j В

=8,28+9,65j=12,71e 49°21′ j В

Вольтметр будет показывать действительную величину напряжения, которая находится по выражению:

2) Составить баланс активной и реактивной мощностей. Определить показание активной мощности, измеряемой ваттметром.

Полная мощность всей цепи:

=323,54-77,47j=332,69e -13°27′ j В·А

Действительная часть комплекса – активная мощность, мнимая часть – реактивная мощность.

Таким образом, ваттметр будет показывать мощность 323,5 Вт.

Найдем активные и реактивные мощности отдельных участков цепи.

Найденная сумма активных мощностей отдельных участков равна активной мощности всей цепи.

С учетом погрешности вычислений, можно сказать, что найденная сумма реактивных мощностей отдельных участков равна реактивной мощности всей цепи.

Таким образом, баланс потребляемой и отдаваемой мощностей соблюдается.

3) Построить в масштабе на комплексной плоскости векторную диаграмму токов и потенциальную диаграмму напряжений по внешнему контуру.

Векторная диаграмма токов – изображение векторов найденных токов, исходящих из одной точки. Сначала откладываем токи I2 и I3, их геометрическая сумма дает ток I1. (Токи строились в масштабе 10:1)

Потенциальная диаграмма напряжений – направленные отрезки, соединяющие точки, соответствующие потенциалам каждой точки контура. Обычно обход контура берется против направления тока (в нашем случае, против часовой стрелки) – контур abcdef.

Определим длину отрезков, необходимых отложить на диаграмме:

Отложение отрезков начинается из точки (0;0), Uab – падение напряжение на катушке, поэтому отрезок откладывается с опережением на 90° (перпендикулярно направлению I3 против часовой стрелки), затем от конца Uab откладывается отрезок Ubc (падение на конденсаторе) перпендикулярно I3 (против направления Uab). Ucd откладывается синфазно I3, Ude – синфазно I1, Uef – перпендикулярно I1. Точка конца диаграммы совпадает с отрезком общего напряжения Е, значит расчет произведен верно.

Дана схема трехпроводной электрической цепи:

Источник