Меню

Транзистор перегрузка по напряжению

О транзисторах «на пальцах». Часть 1. Биполярные транзисторы

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Читайте также:  Нормальное напряжение круглое сечение

Мы устали… отдохнём немного…

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Источник



ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Радиотехника Рекомендации по применению биполярных транзисторов

Рекомендации по применению биполярных транзисторов

Рекомендации по применению биполярных транзисторов, защита, правила установки и включения

Зависимость параметров транзисторов от температуры, электрического режима и частоты, наличие технологического разброса параметров накладывают специфические требования на расчет и принципы построения схем на транзисторах, обеспечивающих высокую надежность в эксплуатационных условиях.

Выбор типа транзистора определяется характером радиоэлектронной схемы, а также требованиями к ее выходным электрическим параметрам и эксплуатационным режимам. Необходимо иметь в виду, что кремниевые транзисторы по сравнению с германиевыми лучше работают при повышенной температуре (вплоть до 125 °С), но их коэффициент передачи по току сильно уменьшается при низких температурах. Поэтому для получения заданного усиления при низких температурах используется больше транзисторов. В области малых токов кремниевые транзисторы имеют более резкую зависимость параметров (h21э и др.) от тока эмиттера. Частотный предел усиления и генерирования транзисторов должен строго соответствовать схемным требованиям. Не следует применять высокочастотные биполярные транзисторы в низкочастотных каскадах, поскольку они склонны к самовозбуждению и к развитию вторичного пробоя. Не рекомендуется применять мощные транзисторы в тех случаях когда можно использовать маломощные, так как при работе мощных транзисторов в маломощных схемах (при малых токах, которые могут быть соизмеримы с обратным током коллектора) коэффициент передачи по току сильно зависит как от тока, так и от температуры окружающей среды.

Выбор режима работы транзистора определяет его надежность и долговечность. Не допускается превышение максимально допустимых значений напряжений, токов, температуры, мощности рассеяния указанных в предельно допустимых режимах. Как правило, транзистор работает более устойчиво при неполном использовании его по напряжению и полном использовании по току, чем наоборот. Не допускается работа транзистора при совмещенных максимально допустимых режимах, например, по напряжению и току и т. п. Область рабочего тока коллектора Iк ограничена, с одной стороны, значением обратного тока коллектора IКБО при максимальной рабочей температуре, и для устойчивой работы транзистора принимается значение Iк≥10IКБОmax. С другой стороны Iк, ограничен максимально допустимым значением IКmax. При выборе значения тока коллектора следует учитывать сильную зависимость коэффициента передачи по току при малых значениях тока коллектора, ухудшающиеся при этом частотные свойства и снижающийся уровень шумов. При больших значениях тока происходит уменьшение коэффициента передачи по току.

Читайте также:  Найти амплитуду тока при известной амплитуде напряжения

Минимальное значение напряжения должно превышать падение напряжения полностью открытого транзистора. В этой области снижается коэффициент передачи тока, что приводит к увеличению нелинейных искажений, увеличивается емкость коллекторного перехода, ухудшающая частотные свойства транзистора. Максимальное напряжение коллектора для повышения надежности и долговечности транзистора следует выбирать примерно равным 0,7 от максимально допустимого для соответствующей схемы включения. Выбор эмиттерного напряжения при прямом смещении перехода определяется значением при их работе в переходных режимах. Так в режиме переключения на индуктивную нагрузку максимальное найряжение на коллекторе может в несколько раз превышать постоянное напряжение питания Eк. При включении транзистора энергия, накопленная в катушке индуктивности, может привести к его повреждению. Известны способы защиты транзисторов от перенапряжения (поглощение части накопленной катушкой индуктивности энергии или блокировка транзистора опасную высоковольтовую область). Схема защиты с помощью последовательной RC-цепи приведена на рис. 2a. Для этой схемы емкость конденсатора и сопротивление резистора определяются по формулам

где С — емкость, пФ; L — индуктивность, мкГн; R1 — сопротивление, Ом.

Схемы защиты транзистора от перенапряжений

Рис. 2. Схемы защиты транзистора от перенапряжений с помощью: а — последовательной RС-цепи; б — шунтирующего диода; в — шунтирующего диода и резистора.

Схема защиты транзисторов от всплесков напряжений с использованием шунтирующего диода приведена на рис.2,б. Перепад напряжения на катушке индуктивности в этом случае равен прямому падению напряжения на диоде. Физический смысл защиты транзистора с помощью диода состоит в том, что энергия, запасенная катушкой индуктивности передается с помощью диода источнику питания и выделяется активном сопротивлении нагрузки. Для ускорения времени разряда последовательно с диодом можно включить добавочный резистор R1 (рис.2,в). Включение резистора R1, кроме того, снимает высчастотную генерацию контура, образованного паразитной емкостью диода и индуктивной нагрузкой. Вместо R1 можно применить и кремниевый стабилитрон, включенный встречно шунтирующему диоду (рис.3,а). В этом случае максимальное напряжение на транзисторе будет ограничено значением UКЭmax=Eк+Uст.

Схемы защиты транзистора от перенапряжений с помощью диода и стабилитрона

Рис. 3. Схемы защиты транзистора от перенапряжений с помощью: а — диода и стабилитрона; б,в — стабилитрона.

Для защиты усилителей от случайных перенапряжений а также от импульсных перегрузок в схеме с реактивной нагрузкой применяются кремниевые стабилитроны (рис.3,б). В усилителях низкой частоты можно также шунтировать участок коллектор — эмиттер диодом. В широкополосных усилителях, однако, такой способ может изменить частотные свойства каскада за счет значительной емкости диода. Схема защиты, используемая в широкополосных и других высокочастотных усилителях, приведена на рис. 3,в. Смещение выбирается таким образом, чтобы оно было меньше Uст стабилитрона.

При нормальной работе каскада стабилитрон закрыт и не влияет на частотную характеристику усилителя. При превышении установленного напряжения стабилитрон шунтирует транзистор, предохраняя его от повреждения.

Для защиты транзистора от перегрузки по току рекомендуются следующие способы: включение токоограничивающих резисторов последовательно с выводами коллектора и эмиттера (не следует ограничивать ток включением резистора в цепь базы); шунтирование полупроводниковых приборов резистором; параллельное включение транзисторов. Используя последний способ, необходимо учитывать, что полупроводниковые приборы имеют разброс сопротивления и, следовательно, ток между параллельно включенными приборами распределяется неравномерно. Так как разброс сопротивления зависит от темратуры и изменяется со временем, надежная работа достигается с подбором приборов с идентичными параметрами, а выравниванием тока приборов с помощью добавочных резисторов небольшой величины, включенных последовательно в цепь каждого прибора (рис. 4). Параллельно включенные транзисторы необходимо располагать на одном и том же теплоотводе, приняв меры по максимально возможному выравниванию температур их корпусов. Эти температуры не должны отличаться более чем на 1. 2°С.

Схема выравнивания токов через параллельно включенные транзисторы

Рис. 4. Схема выравнивания токов через параллельно включенные транзисторы.

Обеспечение теплового режима транзистора — одна из главных задач при конструировании радиоаппаратуры. Теплоотводящие элементы должны рассчитываться так, чтобы их тепловое сопротивление обеспечивало нормальную теплоотдачу корпуса транзистора в окружающую среду, а температура перехода транзистора не превышала допустимую. При свободной компоновке элементов внутри аппаратуры целесообразно использовать специальные радиаторы или располагать транзисторы непосредственно на шасси прибора.

конструкция радиаторов для транзисторов

Рис. 5. Ребристый радиатор; а — односторонний; б — двусторонний.

По конструкции радиаторы делятся пластинчатые, ребристые односторонние и двусторонние. Площадь теплоотвода приближенно можно вычислить по формуле

где RТп.с — требуемое тепловое сопротивление переход — окружающая среда, °С/мВт; σТ — коэффициент теплоизлучения от теплоотвода в окружающую среду мВт/(см 2 • °С) Коэффициент σТ примерно равен 1,5 мВт/(см 2 • °С) и зависит от количества тепла, отводимого от теплоотвода за счет теплопроводности, конвекции и излучения. Теплопроводность растет с увеличением площади S теплоотвода. Отвод тепла за счет конвекции увеличивается с повышением разности температур теплоотвода и окружающей среды. Конвекция улучшается при вертикальном положении плоскости теплоотвода. Максимальный отвод тепла за счет излучения составляет 0,6 мВт/(см 2 • °С). Рекомендуется покрывать теплоотвод (радиатор) черной матовой краской или зачернять его каким-либо способом для увеличения эффективности отвода тепла за счет излучения.

При плотной компоновке элементов внутри аппаратуры или больших мощностях рассеивания в приборе применение радиаторов, расположенных внутри блока или прибора, становится малоэффективным. В этом случае мощные транзисторы целесообразно располагать непосредственно на корпусе прибора или на радиаторах, имеющих тепловой контакт с внешней средой.

Для эффективной работы радиатора необходим надежный тепловой контакт с транзистором. Для этого контактирующая с транзистором поверхность радиатора должна быть плоской, гладкой, без заусенцев и царапин. Для каждого вывода транзистора следует просверлить отдельное отверстие минимального диаметра. Транзисторы необходимо крепить к радиатору при помощи предусмотренных конструкций (болты, фланцы и др.). Для улучшения теплового контакта между транзистором и теплоотводом используют специальные теплоотводящие пасты или смазки, например пасту кремнийорганическую теплопроводящую КПТ-8.

Электрическая изоляция транзистора от радиатора достигается установкой прокладок из слюды, фторопластовой пленки толщиной десятки микрометров, металлокерамических прокладок, а также использованием радиаторов с глубоким анодированием. Однако необходимо стремиться к электрической изоляции радиатора от корпуса прибора, а не транзистора от радиатора.

Если два или более мощных транзистора включены параллельно, то между ними должен быть хороший тепловой контакт, чтобы тепловой режим транзисторов был одинаковым и устойчивым. Для этого транзисторы устанавливают на общем радиаторе. В противном случае перегрев одного из них приведет к увеличению рассеиваемой им мощности за счет уменьшения ее на остальных транзисторах.

Правила установки и включения транзисторов

1. Транзисторы необходимо крепить за корпус, причем мощные транзисторы — при помощи предусмотренных конструкций деталей (болты, специальные фланцы и т. п.).

2. Выводы разрешается изгибать на расстоянии не менее 10 мм от корпуса, если нет других указаний. Изгиб жестких выводов мощных транзисторов запрещается.

3. Транзисторы не следует располагать вблизи элементов и узлов с большим тепловыделением (электронные лампы, трансформаторы питания, мощные резисторы и др.).

4. Транзисторы не следует размещать в сильных магнитных полях.

5. Выводы следует паять не ближе 10 мм от корпуса, обеспечивая теплоотвод между местом пайки и корпусом транзистора. Время пайки должно быть как можно меньшим (не более 2. 3 с). Следует применять припои с температурой плавления не более 260 °С.

6. Выводы базы должны подсоединяться первыми, а отключаться последними. Запрещается подавать напряжение на транзистор с отключенной базой.

7. Транзисторы можно заменять только при отсутствии напряжения питания.

8. Необходимо исключить возможность подачи напряжения питания обратной (ошибочной) полярности, которым может быть пробит один из переходов транзистора. Для этого рекомендуется включать полупроводниковый диод последовательно в цепь питания транзистора.

9. Для защиты транзисторов от действия статического электричества необходимо тщательно заземлять оборудование и измерительные приборы, применять заземленные браслеты и паяльники с заземленным жалом.

Источник

Обеспечение защиты от перегрузки в MOSFET драйверах

Введение

Силовые транзисторы IGBT и MOSFET стали основными элементами, применяемыми в мощных импульсных преобразователях. Их уникальные статические и динамические характеристики позволяют создавать устройства, отдающие в нагрузку сотни кВт при минимальных габаритах и кпд, превышающем 95%.

Общим у IGBT и MOSFET является изолированный затвор, в результате чего эти элементы имеют схожие характеристики управления. Благодаря отрицательному температурному коэффициенту тока короткого замыкания, появилась возможность создавать транзисторы, устойчивые к короткому замыканию.

Для ключевых элементов с управляющим затвором опасным также является состояние, когда напряжение управления падает до значения, при котором транзистор может перейти в линейный режим и выйти из строя из-за перегрева кристалла.

Отсутствие тока управления в статических режимах и общее низкое по-требление по цепям питания позволяет отказаться от гальванически изолированных схем управления на дискретных элементах и создать интегральные схемы управления — драйверы. В настоящее время ряд фирм и прежде всего фирма International Rectifier выпускает широкую гамму таких устройств, управляющих одиночными транзисторами, полумостами и мостами — двух и трехфазными. Кроме обеспечения тока затвора они способны выполнять и ряд вспомогательных функций, таких, как защита от перегрузки по току, падения напряжения управления и ряд других.

Читайте также:  Определить напряжение лэп по опорам

В данной статье рассматриваются способы использования серийных драйверов для режимов защиты.

Режимы короткого замыкания

Рис. 1

Причины возникновения токовых перегрузок разнообразны. Чаще всего это аварийные случаи, такие как пробой на корпус или замыкание нагрузки.

Перегрузка может быть вызвана и особенностями схемы, например переходным процессом или током обратного восстановления диода оппозитного плеча. Такие перегрузки должны быть устранены схемотехническими методами: применением цепей формирования траектории (снабберов), выбором резистора затвора, изоляцией цепей управления от силовых и др.

Подробно поведение транзисторов в режимах короткого замыкания (КЗ) дано в 1 .

Включение транзистора при коротком замыкании в цепи нагрузки

Рис. 2

Принципиальная схема и эпюры напряжения, соответствующие этому ре-жиму, приведены на рис. 1а и 2. Все графики получены при анализе реальных схем с помощью программы PSpice. Для анализа били использованы усовер-шенствованные модели транзисторов MOSFET фирмы International Rectifier и макромодели IGBT и драйверов, разработанные автором статьи.

Максимальный ток в цепи коллектора транзистора ограничен напряжением на затворе и крутизной транзистора. Из-за наличия емкости в цепи питания, внутреннее сопротивление источника питания не влияет на ток КЗ. В момент включения ток в транзисторе нарастает плавно из-за паразитной индуктивности LS в цепи коллектора (средний график на рис.2). По этой же причине напряжение имеет провал (нижний график). После окончания переходного процесса к транзистору приложено полное напряжение питания, что приводит к рассеянию колоссальной мощности в кристалле. Режим КЗ необходимо прервать через некоторое время, необходимое для исключения ложного срабатывания. Это время обычно составляет 1-10мкс. Естественно, что транзистор должен выдерживать перегрузку в течение этого времени.

Короткое замыкание нагрузки у включенного транзистора

Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1б и 3. Как видно из графиков, процессы в этом случае происходят несколько иначе. Ток, как и в предыдущем случае ограниченный параметрами транзистора, нарастает со скоростью, определяемой паразитной индуктивностью Ls (Средний график на рис.3). Прежде, чем ток достигнет установившегося значения, начинается рост напряжения Vce (нижний график). Напряжение на затворе возрастает за счет эффекта Миллера (верхний график). Соответственно возрастает и ток коллектора, который может превысить установившееся значение. В этом режиме кроме отключения транзистора необходимо предусмотреть и ограничение напряжения на затворе.

Рис. 3

Как было отмечено, установившееся значение тока КЗ определяется на-пряжением на затворе. Однако уменьшение этого напряжения приводит к повышению напряжения насыщения и, следовательно, к увеличению потерь проводимости. Устойчивость к КЗ тесно связана и с крутизной транзистора. IGBT с высоким коэффициентом усиления по току имеют низкое напряжение насыщения, но небольшое допустимое время перегрузки. Как правило транзисторы, наиболее устойчивые к КЗ имеют высокое напряжение насыщения и, следовательно, высокие потери.

Допустимый ток КЗ IGBT гораздо выше, чем у биполярного транзистора. Обычно он равен 10-кратному номинальному току при допустимых напряжениях на затворе. Ведущие фирмы, такие как International Rectifier, Siemens, Fuji выпускают транзисторы, выдерживающие без повреждения такие перегрузки. Этот параметр оговаривается в справочных данных на транзисторы и называется Short Circuit Ration., а допустимое время перегрузки — tsc — Short Circuit Time.

Быстрая реакция схемы защиты вообще полезна для большинства применений. Использование таких схем защиты в сочетании с высокоэффективными IGBT повышают эффективность работы схемы без снижения надежности.

Применение драйверов IR для защиты от КЗ

Рассмотрим методы отключения транзисторов в режиме перегрузки на примере драйверов фирмы International Rectifier, так как эти микросхемы позволяют реализовать функции защиты наиболее полно.

Драйвер одиночного транзистора

На рис.4 приведена типовая схема подключения драйвера транзистора верхнего плеча IR2125 с использованием функции защиты от перегрузки. Для этой цели используется вывод 6 — CS. Напряжение срабатывания защиты — 230мВ. Для измерения тока в эмиттере установлен резистор RSENSE, номинал которого и делитель R1,R4 определяют ток защиты.

Рис. 4

Как было указано выше, если при появлении перегрузки уменьшить на-пряжение на затворе, период распознавания аварийного режима может быть увеличен. Это необходимо для исключения ложных срабатываний. Данная функция реализована в микросхеме IR2125. Конденсатор С1, подключенный к выводу ERR, определяет время анализа состояния перегрузки. При С1=300пФ, время анализа составляет около 10мкс. На это время включается схема стабилизации тока коллектора и напряжение на затворе снижается. Если состояние перегрузки не прекращается, то через 10мкс транзистор отключается полностью.

Отключение защиты происходит при снятии входного сигнала, что позволяет пользователю организовать триггерную схему защиты. При использовании такой защиты особое внимание следует уделить выбору времени повторного включения, которое должно быть больше тепловой постоянной времени кристалла силового транзистора. Тепловая постоянная времени может быть определена из графика теплового импеданса Zthjc.

Описанный способ включения транзистора имеет свои недостатки. Резистор RSENSE должен быть мощным и безындуктивным (серийно выпускаемые витые мощные резисторы имеют недопустимо высокую паразитную индуктивность). Кроме того он создает дополнительные потери мощности, что снижает эффективность схемы. На рис.5 приведена схема, свободная от указанных недостатков. В этой схеме для анализа ситуации перегрузки используется зависимость напряжения насыщения от тока коллектора. Для MOSFET транзисторов эта зависимость практически линейна, т.к. сопротивление открытого канала мало зависит от тока стока. У IGBT график Von=f(Ic) нелинеен, однако точность его вполне достаточна для выбора напряжения, соответствующего току требуемому защиты.

Для анализа состояния перегрузки по напряжению насыщения измерительный резистор не требуется. При подаче положительного управляющего сигнала на затвор, на входе защиты драйвера SC появляется напряжение, определяемое суммой падения напряжения на открытом диоде VD2 и на открытом силовом транзисторе Q1 и делителем R1, R4, который задает ток срабатывания. Падение напряжения на диоде практически неизменно и составляет около 0,5В. Напряжение открытого транзистора при выбранном токе КЗ определяется из графика Von=f(Ic). Диод VD2, как и VD1 должен быть быстродействующим и высоковольтным.

Рис. 5

Кроме защиты от перегрузки по току, драйвер анализирует напряжение питания входной части VСС и выходного каскада VB, отключая транзистор при падении VB ниже 9В, что необходимо для исключения линейного режима работы транзистора. Такая ситуация может возникнуть как при повреждении низковольтного источника питания, так и при неправильном выборе бутстрепной емкости С2. Величина емкости С2 должна вычисляться исходя из тока затвора силового транзистора и минимальной частоты следования импульсов. Если возможно пропадание импульсов, необходимо использовать «плавающий» источник питания. Данный способ защиты является наиболее предпочтительным и использовать первую схему целесообразно только тогда, когда нужно точное задание тока защиты.

Драйвер трехфазного моста

На рис.6 приведена схема подключения драйвера трехфазного моста IR2130 с использованием функции защиты от перегрузки. Для этой цели используется вход ITR. Напряжение срабатывания защиты — 500мВ. Для измерения полного тока моста в эмиттерах установлен резистор RSENSE, номинал которого вместе с делителем R2, R3 определяет ток защиты.

Драйвер IR2130 обеспечивает управление MOSFET и IGBT транзисторами при напряжении до 600В, имеет защиту от перегрузки по току и от снижения питающих напряжений. Схема защиты содержит полевой транзистор с открытым стоком для индикации неисправности (FAULT). Он также имеет встроенный усилитель тока нагрузки, что позволяет вырабатывать контрольные сигналы и сигналы обратной связи. Драйвер формирует время задержки (deadtime) между включением транзисторов верхнего и нижнего плеча для исключения сквозных токов. Это время составляет 1-2 мкс.

Для правильного использования указанной микросхемы и создания на ее основе надежных схем надо учитывать несколько нюансов.

Рис. 6

Особенностью драйвера IR2130 является отсутствие функции ограничения напряжения на затворе при КЗ. По этой причине постоянная времени цепочки R1C1, предназначенной для задержки включения защиты, не должна превышать 1мкс. Разработчик должен учитывать это обстоятельство и рассчитывать, что отключение моста произойдет через 1мкс после возникновения КЗ, в результате чего ток (особенно при активной нагрузке) может превысить расчетное значение.

Ток включения/выключения для IR2130 составляет 200/400 мА. Это необходимо учитывать при выборе силовых транзисторов и резисторов затвора для них. В параметрах на транзистор указывается величина заряда затвора (обычно в нК), которая определяет, при данном токе, время включения/выключения транзистора. Длительность переходных процессов, связанных с переключением, должна быть меньше времени задержки, формируемого драйвером (1-2мкс). Применение очень мощных транзисторов с большими паразитными емкостями может привести к ложному открыванию транзистора нижнего плеча при открывании верхнего из-за эффекта Миллера. Уменьшение резистора затвора или использование диода, параллельного этому резистору не всегда решает проблему по причине недостаточного тока выключения (400мА). В этом случае рационально применение усилителя тока. В качестве него могут быть использованы буферные каскады или полумостовые драйверы IR211X.

Указанные обстоятельства обычно не создают проблем, и данная микросхема на сегодняшний день является оптимальным элементом для управления трехфазными мостовыми усилителями.

1 — Силовые IGBT модули. Материалы по применению. Издательство «Додека», М.1997

Источник