Меню

Треугольник мощностей для постоянного тока

Треугольник мощностей для постоянного тока

Электрическая мощность. Треугольник мощностей.

Сегодня мы поговорим об электрической мощности, о том, что это такое, о её видах и о том, чем они отличаются.Начнем с определения. Электрическая мощность – величина, характеризующая скорость передачи (преобразования) электроэнергии. Соответственно, если мощность это скорость преобразования электроэнергии, то по аналогии с расчетом обычной скорости (например автомобиля), для её расчета необходимо в знаменатель поставить время, а в числитель электроэнергию. Пример — электрочайник включили, чтобы вскипятить воду, за 6 минут счетчик «накрутил» 0,2 кВт*ч, найдем мощность чайника: Р = W / t (Р – активная мощность, W – электроэнергия, t – время), Р = 0,2 / (6/60) = 2 кВт. Если то же количество электроэнергии фен «потребил» за время 9 мин, то по той же формуле Р2 = W 2 / t = 0,2 / (9/60) = 1,33 кВт. Обратите внимание, чайник потребил одинаковое количество электроэнергии, но за меньшее время, именно поэтому он мощнее, то есть он обладает большей мощностью.

То? о чем мы говорили в предыдущем абзаце, отражает физический смысл понятия «электрическая мощность». Теперь поговорим о мощности в энергетическом ракурсе. В зависимости от вида мощности измеряться она может в ВА (Вольт-Амперах) – полная мощность, Вт (ваттах) – активная мощность или вар (Вольт-Ампер реактивный) – реактивная мощность. Кстати, несмотря на присутствие имен собственных в единице вар, в международной системе единиц (СИ) принято решение обозначать единицы реактивной мощности с маленькой буквы– вар. Итак, полная мощность, судя по названию, выражает всю мощность переданную или преобразованную электроустановкой. Она обозначается буквой S и измеряется в Вольт-Амперах (ВА). Полная мощность однофазной цепи S = U * I , ВА, 3-хфазной цепи S = √3* U * I , где U – линейное напряжение, I – фазный ток (данная формула применима для симметричной нагрузки, при нессиметричной нагрузке необходимо суммировать мощность каждой фазы). Активная мощность является частью полной и характеризует электрическую энергию, преобразуемую в любой другой вид энергии. Например, вентилятор преобразовывает электрическую энергию в механическую, а печка в тепловую и т.п. Активная мощность обозначается Р и измеряется в Вт. Формула активной мощности Р = S * cos φ , для однофазной цепи Р = U * I * cos φ , для 3-хфазной Р = √3* U * I * cos φ , где U – линейное напряжение, I – фазный ток. Угол φ – так называемый угол сдвига фаз (между током и напряжением цепи) или коэффициент мощности, он может изменяться в пределах от 0 до 1. В случае, когда cos φ = 1, активную мощность можно выразить как Р = I 2 * R (вспоминаем правило Джоуля-Ленца), в этом случае Р = I 2 * R = S . Есть ещё реактивная мощность, характеризующая циклические режимы в электротехнических устройствах, или можно сказать, что реактивная мощность учитывает нагрузки, создаваемые в электроустановках колебаниями энергии в цепях переменного тока. Довольно непонятно, не правда ли? Попробуйте выучить любое из понравившихся Вам определений, чтобы блеснуть им в каком-нибудь умном разговоре. На этом его польза и закончится. Итак, реактивная мощность – обозначается Q , измеряется в вар. Она численно равна Q = S * sinφ (1-нофазные цепи) и Q = √3* U * I * sin φ .

Читайте также:  Параллельное соединение усилителей мощности

Для понимания связи всех видов электрической мощности удобно воспользоваться графическим их изображением (рис. 1). Это так называемый, треугольник мощностей. Как мы видим S = √(Р 2 + Q 2 ) .

Приведем пример: Полная мощность цепи S = 100 кВА, cos φ = 0,9. Найти активную и реактивную мощность. Решение: если косинус φ равен 0,9 , то синус равен sin φ = 1-0.9 2 (основное тригонометрическое тождество) = 0,436. Тогда Р = 100*0,9, а Q = 100*0,436. Находим Р = 90 кВт, а Q = 43.6 квар.

Пример2: 3-хфазный асинхронный двигатель (номинальное напряжение 380 В) имеет номинальную электрическую мощность 15 кВт, cos φ = 0,85. КПД принять 100 %. Рассчитать номинальный ток двигателя для последующего выбора кабельной линии. Решение I = P /(√3* U * cos φ) = 15/(1,73*0,38*0,85) = 26,8 А.

Вадим Д.
г.Волгодонск
Ростовская обл.

Источник



Треугольник мощностей

Дата публикации: 17 апреля 2015 .
Категория: Статьи.

Если величины треугольника напряжений (рисунок 1, а) умножить на ток I (рисунок 1, б), то получим треугольник мощностей (рисунок 1, в). Все стороны треугольника мощностей, показанного отдельно на рисунке 2, представляют собой мощности.

Рисунок 1. Получение треугольника мощностей

Рисунок 2. Треугольник мощностей

Гипотенуза треугольника мощностей есть полная мощность S.

Она измеряется в вольт-амперах (ВА) или киловольт-амперах (кВА) по показаниям вольтметра и амперметра. Величина полной мощности характеризует основные габариты (наибольшие размеры) генераторов и трансформаторов. В самом деле, изоляция обмоток генераторов и трансформаторов рассчитывается на определенное напряжение, а величина тока определяет нагрев их обмоток (I 2 × r).

Катет, прилегающий к углу φ, представляет собой известную нам активную мощность P.

Активная мощность в цепях переменного тока расходуется на нагрев. В двигателях переменного тока большая часть активной мощности превращается в механическую мощность.

Активная мощность измеряется ваттметром и выражается в ваттах (Вт) или киловаттах (кВт). Из треугольника мощностей имеем:

Читайте также:  Что такое мощность учреждения культуры

Активная мощность характеризует степень нагрузки первичного двигателя, вращающего генератор.

Катет, лежащий против угла φ, есть реактивная мощность Q.

Так как Ur = I × x (где x – реактивное сопротивление), то

Реактивная мощность обусловлена наличием магнитных и электрических полей в индуктивностях и емкостях цепей. Из треугольника мощностей имеем:

Реактивная мощность измеряется в вольт-амперах реактивных (вар) или киловольт-амперах реактивных (квар). Применяя к треугольнику мощностей теорему Пифагора, получим:

Полная мощность

Электрическая цепь с активным и индуктивным сопротивлениями и измерительными приборами
Рисунок 3. Электрическая цепь с активным и индуктивным сопротивлениями и измерительными приборами

Рассмотрим электрическую цепь, показанную на рисунке 3, в которую входят индуктивное и активное сопротивления и измерительные приборы – амперметр, вольтметр и ваттметр.

1. Если подключить эту цепь к постоянному напряжению, то, поскольку индуктивное сопротивление xL при постоянном токе будет равно нулю, в цепи остается одно активное сопротивление r и тогда

Ток при постоянном напряжении

Амперметр покажет ток 5 А.

Следовательно, ваттметр покажет 600 Вт. Таким образом, ваттметр, включенный в цепь постоянного тока, показывает мощность в ваттах, потребляемую цепью. Показание ваттметра равно произведению показаний вольтметра и амперметра.

2. Подключим ту же цепь к переменному напряжению.

Полное сопротивление

Ток при переменном напряжении

Амперметр покажет ток 4 А.

Подсчитаем мощность, идущую на нагрев:

Показание ваттметра в этом случае будет 384 Вт.

Полная мощность, забираемая цепью от источника переменного тока,

Следовательно, генератор, питающий эту цепь, отдает полную мощность S = 480 ВА. Но в самой цепи только активная мощность P = 384 Вт безвозвратно теряется в виде тепла.

Отсюда видно, что цепь переменного тока, содержащая наряду с активным сопротивлением индуктивное, из всей получаемой ею полной энергии только часть расходует на тепло. Остальная часть – реактивная энергия – то забирается цепью от генератора и запасается в магнитном поле катушки, то возвращается обратно генератору.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Источник

Треугольники напряжений, сопротивлений и мощностей

Тот, кто имеет представление о векторных диаграммах, легко заметит, что на них можно очень четко разглядеть прямоугольный треугольник напряжений, каждая из сторон которого отражает: полное напряжение цепи, напряжение на активном сопротивлении, и напряжение на реактивном сопротивлении.

Треугольник напряжений

В соответствии с теоремой Пифагора, связь между этими напряжениями (между полным напряжением цепи и напряжением на ее участках) будет выглядеть так:

Напряжение

Если следующим шагом разделить значения этих напряжений на ток (ток через все участки последовательной цепи течет один и тот же), то по закону Ома получим значения сопротивлений, то есть теперь можно будет говорить о прямоугольном треугольнике сопротивлений:

Треугольник сопротивлений

Аналогичным образом (как в случае с напряжениями) можно по теореме Пифагора установить связь между полным сопротивлением цепи и реактивными сопротивлениями. Связь выразится следующей формулой:

Читайте также:  Как определить мощность телевизора

Полное сопротивление цепи

Далее умножим величины сопротивлений на ток, по сути — еще в определенное количество раз увеличим каждую из сторон прямоугольного треугольника. В итоге получим прямоугольный треугольник мощностей:

Треугольник мощностей

Активная мощность, выделяемая на активном сопротивлении цепи, связанная с необратимым преобразованием электрической энергии (в тепло, в совершение работы в установке) окажется явно связана с реактивной мощностью, участвующей в обратимом преобразовании энергии (создание магнитных и электрических полей в катушках и конденсаторах) и с полной мощностью, подводимой к электроустановке.

Активная мощность измеряется в ваттах (Вт), реактивная — в варах (ВАР — вольт-ампер реактивный), полная — в ВА (вольт-ампер).

По теореме Пифагора имеем право записать:

Полная мощность

Теперь обратим внимание на то, что в треугольнике мощностей есть угол фи, косинус которого легко определить прежде всего через активную мощность и полную мощность. Косинус этого угла (косинус фи) называется коэффициентом мощности. Он показывает, какая доля полной мощности приходится на совершение полезной работы в электроустановке и в сеть не возвращается.

Очевидно, более высокий коэффициент мощности (максимум единица) свидетельствует о более высокой эффективности преобразования подводимой к установке энергии в работу. Если коэффициент мощности равен 1, то вся подводимая энергия идет на совершение работы.

Коэффициент мощности

Полученные соотношения позволяют выразить ток потребления установки через коэффициент мощности, активную мощность и напряжение сети:

Ток

Так, чем меньше косинус фи, тем больший ток требуется от сети для совершения определенной работы. Практически этот фактор (максимальный ток от сети) ограничивает пропускную способность ЛЭП, и значит, чем меньше коэффициент мощности, тем выше загрузка линий и меньше полезная пропускная способность (низкий косинус фи порождает данное ограничение). Джоулевы потери в ЛЭП при снижении косинуса фи видны из следующей формулы:

Потери активной мощности

На активном R сопротивлении ЛЭП потери увеличиваются тем сильнее, чем выше ток I, хотя он для нагрузки и реактивный. Поэтому можно сказать, что при низком коэффициенте мощности попросту возрастает стоимость передачи электроэнергии. Значит повышение косинуса фи — это важная народно-хозяйственная задача.

Реактивную составляющую полной мощности желательно приблизить к нулю. Для этого электродвигатели и трансформаторы хорошо бы всегда использовать на полной загрузке и по окончании использования отключать, чтобы они не работали в холостую. На холостом ходу двигатели и трансформаторы имеют очень низкий коэффициент мощности. Один из путей повышения косинуса фи на потребителях — применение конденсаторных батарей и синхронных компенсаторов.

Источник