Меню

Твердые диэлектрики потери мощности

Что такое диэлектрические потери и из-за чего они возникают

Что такое диэлектрические потери и из чего они возникаютДиэлектрическими потерями называют энергию, рассеиваемую в единицу времени е диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика. При постоянном напряжении потери энергии определяются только силой сквозного тока, обусловленного объемной и поверхностной проводимостями. При переменном напряжении к этим потерям добавляются потери, обусловленные различного вида поляризациями, а также наличием полупроводниковых примесей, окислов железа, углерода, газовых включений и т. п.

Рассматривая простейший диэлектрик, можно записать выражение рассеиваемой в нем под воздействием переменного напряжения мощности:

где U — приложенное к диэлектрику напряжение, I а — активная составляющая тока, протекающего через диэлектрик.

Схему замещения диэлектрика обычно представляют в виде последовательно соединенных конденсатора и активного сопротивления. Из векторной диаграммы (см. рис. 1):

где δ — угол между вектором полного тока I и его емкостной составляющей Ic.

где — емкость конденсатора (данного диэлектрика) при угловой частоте ω .

В результате рассеиваемая в диэлектрике мощность равна

Pa = U 2 ·ω·C · tgδ ,

то есть потери энергии, рассеиваемые в диэлектрике, пропорциональны тангенсу угла δ , который называется углом диэлектрических потерь или просто углом потерь. Этот угол δ к характеризует качество диэлектрика. Чей меньше угол д иэлектрических потерь δ , тем выше диэлектрические свойства изоляционного материала.

Рис. 1. Векторная диаграмма токов в диэлектрике, находящимся под напряжением переменного тока.

Введение понятия угла δ удобно для практики тем, что вместо абсолютного значения диэлектрических потерь рассматривается относительное значение, позволяющее сравнить между собой изоляционные изделия с различными по качеству диэлектриками.

Диэлектрические потери в газах

Диэлектрические потери в газах малы. Газы имеют весьма малую электропроводность. Ориентация дипольных молекул газа при их поляризации не сопровождается диэлектрическими потерями. Зависимость tgδ = f ( U ) называют кривой ионизации (рис. 2).

Рис. 2. Изменение tgδ в зависимости от напряжения для изоляции с воздушными включениями

По возрастанию tgδ с увеличением напряжения можно судить о наличии газовых включений в твердой изоляции. При значительных ионизации и потерях в газе может произойти разогрев и разрушение изоляции. Поэтому изоляцию обмоток высоковольтных электрических машин для удаления газовых включений при изготовлении подвергают специальной обработке — сушке под вакуумом, заполнению пор изоляции разогретым компаундом под давлением, обкатке к прессовке.

Ионизация воздушных включений сопровождается образованием озона и окислов азота, разрушительно действующих на органическую изоляцию. Ионизация воздуха в неравномерных полях, например в линиях электропередач, сопровождается видимым световым аффектом (короной) и значительными потерями, что снижает к. п. д. передачи.

Диэлектрические потери в жидких диэлектриках

Диэлектрические потери в жидкостях зависят от их состава. В нейтральных (неполярных) жидкостях без примесей электропроводность очень мала, поэтому в них малы и диэлектрические потери. Например, очищенное конденсаторное масло имеет tgδ

В технике наибольшее распространение получили полярные жидкости (совол, касторовое масло и т.п.) или смеси нейтральных и дипольных жидкостей (трансформаторное масло, компаунды и т. п.) у которых диэлектрические потери значительно больше, чем у нейтральных жидкостей. Например, tgδ касторового масла при частоте 10 6 Гц и температуре 20 о С (293 К) равен 0,01.

Диэлектрические потери полярных жидкостей зависят от вязкости. Эти потери называют дипольными, так как они обусловлены дипольной поляризацией.

При малой вязкости молекулы ориентируются под действием поля без трения, дипольные потери при этом малы, а общие диэлектрические потери обусловлены только электропроводностью. С увеличением вязкости дипольные потери возрастают. При некоторой вязкости наступает максимум потерь.

Это объясняется тем, что при достаточно большой вязкости молекулы не успевают следовать за изменением поля и дипольная поляризация практически исчезает. Диэлектрические потери при этом малы. При повышении частоты максимум потерь смещается в область более высокой температуры.

Зависимость потерь от температуры носит сложный характер: tgδ увеличивается с ростом температуры, достигает своего максимума, затем уменьшается до минимума, после чего снова возрастает, это объясняется ростом электропроводности. Дипольные потери возрастают с увеличением частоты до тех пор, пока поляризация успевает следовать за изменением поля, после чего дипольные молекулы уже не успевают полностью ориентироваться в направлении поля и потери становятся постоянными.

Читайте также:  Два механических крота разной мощности при одновременной работе с разных концов тоннеля могли бы

В маловязких жидкостях при низких частотах преобладают потери сквозной проводимости, а потери дипольные незначительны, при радиочастотах, наоборот, дипольные потери велики. Поэтому дипольные диэлектрики не используются в полях высокой частоты.

Диэлектрические потери в твердых диэлектриках

Диэлектрические потери в твердых диэлектриках зависят от структуры (кристаллической или аморфной), состава (органического или неорганического) и характера поляризации. В таких твердых нейтральных диэлектриках, как сера, парафин, полистирол, обладающих только электронной поляризацией диэлектрические потери отсутствуют. Потери могут быть обусловлены только примесями. Поэтому такие материалы находят применение в качестве высокочастотных диэлектриков.

Неорганические материалы, такие, как монокристаллы каменной соли, сильвина, кварца, чистой слюды, обладающие электронной и ионной поляризациями, имеют малые диэлектрические потери, обусловленные только сквозной электропроводностью. Диэлектрические потери в этих кристаллах не зависят от частоты, a tgδ уменьшается с ростом частоты. С увеличением температуры потери и tgft меняются так же, как и электропроводность, возрастая по закону экспоненциальной функции.

В стеклах различного состава, например, керамике с большим содержанием стекловидной фазы, наблюдаются потери, обусловленные электропроводностью. Эти потери вызваны передвижением слабо связанных ионов, обычно они проявляются при температурах выше 50 — 100 о С (323 — 373 К). Эти потери заметно возрастают с температурой по закону экспоненциальной функции и мало зависят от частоты ( tgδ уменьшается с ростом частоты).

В неорганических поликристаллических диэлектриках (мрамор, керамика и т. п.) возникают дополнительные диэлектрические потери, вызванные наличием полупроводящих примесей: влаги, окислов железа, углерода, газа и т. п. Потери в полукристаллических телах могут иметь разные значения даже для одного и того же материала, поскольку свойства материала меняются под воздействием условий окружающей среды.

Диэлектрические потери в органических полярных диэлектриках (древесина, эфиры целлюлозы, натуральный щелк, синтетические смолы) обусловлены структурной поляризацией за счет неплотной упаковки частиц. Эти потери зависят от температуры, имея максимум при определенной температуре, а также от частоты, увеличиваясь с ее ростом. Поэтому упомянутые диэлектрики не применяют в полях высоких частот.

Характерно, что зависимость tgδ от температуры для бумаги, пропитанной компаундом, имеет два максимума: первый наблюдается при отрицательных температурах и характеризует потери клетчатки, второй максимум при повышенной температуре обусловлен дипольным потерями компаунда. С увеличением температуры в полярных диэлектриках возрастают потери, связанные с электропроводностью.

Источник



ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ В ТВЕРДЫХ ДИЭЛЕКТРИКАХ

Твердые диэлектрики подразделяются на:

1. Диэлектрики молекулярной структуры.

2. Диэлектрики ионной структуры.

4. Диэлектрики неоднородной структуры.

1. Диэлектрики молекулярной структуры

· Полярные (бумага, картон, органическое стекло, капрон, эбонит).

· Неполярные (церезин, полистирол, полиэтилен).

Диэлектрические потери, наблюдаемые в неполярных твердых диэлектриках, не содержащих примесей, малы. В полярных твердых диэлектриках будет происходить ориентация дипольных молекул в направлении поля, что увеличивает мощность потерь и приводит к нагреву диэлектрика.

2. Диэлектрики ионной структуры

· С плотной упаковкой частиц в кристаллической решетке (ультрафарфор).

· С неплотной упаковкой частиц в кристаллической решетке (электротехническая керамика).

Чем выше плотность упаковки частиц в решетке, чем меньше решетка содержит примесей, которые искажают ее электростатическое поле, тем меньше мощность диэлектрических потерь.

Если на такие материалы действует повышенная температура, то у них мощность диэлектрических потерь будет увеличиваться благодаря сквозной электропроводности.

Примеси, которые попадают в кристаллическую решетку, на несколько порядков увеличивают мощность диэлектрических потерь.

Отдельно рассматриваются диэлектрические потери, свойственные твердым диэлектрикам аморфной структуры с ионным строением, которые наблюдаются у большинства неорганических стекол. Введение в неорганические стекла тяжелых оксидов (PbO, BaO) приводит к уменьшению мощности диэлектрических потерь в них.

Читайте также:  Компьютер средней мощности характеристики

В сегнетоэлектриках диэлектрические потери значительны вплоть до точки Кюри. При превышении температурного значения, соответствующего точке Кюри, в сегнетоэлектриках исчезает спонтанная поляризация, что резко уменьшает мощность диэлектрических потерь.

4. Диэлектрики неоднородной структуры

К твердым диэлектрикам неоднородной структуры относятся материалы, смешанные механически и состоящие из двух или более компонентов. Например, электротехническая керамика состоит из кристаллической, стекловидной и газовой фаз. Мощность диэлектрических потерь в ней будет зависеть от количественного соотношения между кристаллической и стекловидной фазами, а также от степени открытой пористости материала. Потери в керамике могут оказаться повышенными, если в процессе производства в керамическом изделии образуются полупроводящие включения с электронной электропроводностью. Увеличение потерь в керамике происходит также за счет адсорбированной влаги при наличии открытой пористости.

К числу неоднородных материалов следует отнести слюду, обладающую слоистой структурой. Наличие полупроводящих прослоек в пластинках слюды вызывает увеличение tgd при переменном напряжении низкой частоты по сравнению со значением tgd самих весьма тонких монокристаллов этого материала.

Пропитанную бумагу следует также отнести к диэлектрикам неоднородной структуры. Такая бумага, кроме волокон целлюлозы, содержит пропитывающее вещество того или иного состава. Диэлектрические потери пропитанной бумаги определяются электрическими свойствами обоих компонентов, их количественным соотношением н остаточными воздушными включениями.

Дата добавления: 2015-02-19 ; просмотров: 1327 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Диэлектрические потери

date image2014-02-09
views image21326

facebook icon vkontakte icon twitter icon odnoklasniki icon

Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Диэлектрические потери в диэлектрике можно характеризовать рассеиваемой мощностью, которая определяется по формуле

где ω – угловая частота (ω = 2πf); C – емкость диэлектрика; U – напряжение, прикладываемое к диэлектрику; tgδ – тангенс угла диэлектрических потерь.

На рис.4 приведена схема замещения и векторная диаграмма диэлектрика с потерями. Углом диэлектрических потерь называют угол, дополняющий до 90 о угол сдвига фаз φ между током и напряжением в емкостной цепи.

Рис. 4. Схема замещения а) и векторная диаграмма б) диэлектрика с потерями

Виды диэлектрических потерь.

Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:

1) потери, обусловленные поляризацией;

2) потери, обусловленные сквозной электропроводностью;

3) ионизационные потери;

4) потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией. Из всех видов поляризации с потерями наиболее часто в диэлектриках встречаются дипольная и ионно-релаксационная.

У них есть общие закономерности:

а) tgδ при определенной частоте f1 имеет максимум;

б) у tgδ наблюдается также максимум при некоторой температуре t1, характерной для данного диэлектрика.

В схеме замещения эти виды потерь хорошо описываются цепочкой из емкости C и сопротивления r (рис. 4,a).

Диэлектрические потери, обусловленные сквозной электропроводностью, в схеме замещения хорошо описываются сопротивлением R

Они не зависят от частоты:

Так как сопротивление R зависит от температуры, то и потери от нее также зависят. Они возрастают с температурой по экспоненциальному закону:

где A и b – постоянные материала.

Тангенс δ в этом случае может быть вычислен по формуле:

где f – частота напряжения, Гц; ρ – удельное сопротивление, ;

Ионизационные диэлектрические потери. Эти потери свойственны газообразным диэлектрикам. Они появляются, если напряжение, приложенное к диэлектрику, превысит критическое значение Uкр, при котором начинаются ионизационные процессы. До напряжения Uкр диэлектрические потери практически равны нулю, а затем они резко увеличиваются, и их можно оценить по приближенной формуле:

где A – постоянный коэффициент, f – частота поля.

Ионизационные потери возникают также в жидких и твердых диэлектриках в газовых пузырьках и включениях.

Диэлектрические потери, обусловленные неоднородностью структуры. Они наблюдаются в слоистых диэлектриках: бумаге, пропитанной маслом, в пористой керамике, текстолите, стеклотекстолите и т. д. Ввиду разнообразия структуры неоднородных диэлектриков общей формулы расчета диэлектрических потерь не существует.

Диэлектрические потери в газах. Диэлектрические потери в газах при напряженностях поля, лежащих ниже значения, необходимого для развития ударной ионизации молекул газа, очень малы. В этом случае газ можно практически рассматривать как идеальный диэлектрик. Источником диэлектрических потерь газа может быть только электропроводность, так как ориентация дипольных молекул газов при их поляризации из-за больших расстояний между молекулами не сопровождается диэлектрическими потерями.

Читайте также:  Как увеличить мощность магнитолы пионер

Но так как у газов электропроводность очень мала, то угол диэлектрических потерь ничтожно мал. Величину tgδ можно определить по формуле (1). Для газа tgδ ≈ 4·10 –8 .

При напряженностях поля больше Eкр в газе начинается ионизация, и потери резко возрастают.

Диэлектрические потери в жидких диэлектриках. Среди жидких диэлектриков следует отдельно рассматривать неполярные и полярные.

В неполярных жидкостях диэлектрические потери обусловлены только электропроводностью. У чистых жидких диэлектриков электропроводность мала, поэтому малы и диэлектрические потери. Можно рассчитать tgδ по формуле (1). Например, для нефтяного конденсаторного масла получим tgδ ≈ 0,001. Диэлектрические потери у неполярных диэлектриков зависят от температуры, так как с увеличением температуры уменьшается удельное сопротивление жидкого диэлектрика. У неполярного диэлектрика tgδ с ростом частоты уменьшается. А диэлектрические потери не зависят от частоты.

В полярных жидкостях потери обусловлены двумя причинами:

а) электропроводностью; б) дипольной поляризацией.

Потери, вызванные электропроводностью, зависят только от температуры. Для дипольной поляризации tgδ имеет максимум при некоторой температуре t1. Если теперь учесть оба вида потерь и просуммировать обе зависимости, то получим график, показанный на рис.5,а. Влияние частоты f на tgδ и рассеиваемую мощность показано на рис.5,б

Рис.5. Влияния температуры а) и частоты б) на потери в полярном жидком диэлектрике

Диэлектрические потери в твёрдых диэлектриках. В твёрдых диэлектриках возможны все виды поляризации и потерь. Для выяснения общих закономерностей твёрдые диэлектрики делят на следующие группы.

1. Диэлектрики молекулярной структуры:

а) неполярные, б) полярные.

2. Диэлектрики ионной структуры:

а) плотной упаковки, б) неплотной упаковки.

4. Диэлектрики неоднородной структуры.

Неполярные диэлектрики обладают ничтожно малыми диэлектрическими потерями, и их применяют в качестве высокочастотных диэлектриков. Тангенс δ для них можно рассчитать по формуле (1). Диэлектрические потери у неполярных диэлектриков не зависят от частоты. При увеличении температуры уменьшается удельное сопротивление диэлектрика, а это приводит к увеличению тангенса диэлектрических потерь.

Изменение tgδ от температуры и частоты в полярных диэлектриках такое же, как и для жидкого полярного диэлектрика.

В твёрдых веществах ионной структуры с плотной упаковкой ионов только два вида поляризации: электронная и ионная. В этих диэлектриках диэлектрические потери весьма малы. При повышенных температурах в таких веществах увеличиваются потери от сквозной электропроводности. С ростом частоты tgδ уменьшается, как и у неполярных диэлектриков, так как активный ток остаётся постоянным, а реактивный увеличивается.

В твёрдых веществах ионной структуры с неплотной упаковкой ионов имеет место значительная ионно–релаксационная поляризация, поэтому наблюдаются закономерности изменения tgδ от температуры и частоты, характерные для дипольной поляризации.

Здесь два вида потерь:

а) потери, вызванные передвижением слабосвязанных ионов. Они рассматриваются как потери, обусловленные электропроводностью, возрастающие с температурой и почти не зависящие от частоты (tgδ уменьшается с ростом частоты);

б) потери, вызванные релаксационной поляризацией, у которых tgδ зависит от температуры и частоты.

Для большинства видов электрокерамики количество ионов, участвующих в релаксационной поляризации, непрерывно возрастает с температурой, поэтому максимум tgδ отсутствует и температурная зависимость tgδ подобно неполярным диэлектрикам в первом приближении имеет экспоненциальный характер.

Особенностью сегнетоэлектриков является то, что в них самопроизвольная (спонтанная) поляризация проявляется в определённом температурном интервале, вплоть до точки Кюри. Диэлектрические потери в сегнетоэлектриках мало изменяются с температурой в области спонтанной поляризации и резко падают при температуре выше точки Кюри, когда доменная структура разрушается.

Зависимости tgδ от температуры и частоты в диэлектриках неоднородной структуры очень сложные и определяются как суммы зависимостей составляющих.

Источник