Решение. Генераторы постоянного тока
Генераторы постоянного тока
Задача 1. Генератор постоянного тока независимого возбуждения мощностью Рном и напряжением Uном имеет сопротивление обмоток в цепи якоря, приведенное к рабочей температуре, ; в генераторе применены электрографитированные щетки марки ЭГ ( = 2,5 В). Определить номинальное изменение напряжения при сбросе нагрузки.
Решение
1. Ток в номинальном режиме
2. ЭДС генератора
3. Номинальное изменение напряжения при сбросе нагрузки
Задача 2. Генератор постоянного тока параллельного возбуждения имеет номинальные данные: мощность Рном напряжение Uном, частота вращения nном сопротивление обмоток в цепи якоря, приведенное к рабочей температуре, , падение напряжения в щеточном контакте пары щеток = 2 В, сопротивление цепи обмотки возбуждения rв, КПД в номинальном режиме ток генератора Iном ток в цепи возбуждения Iв, ток в цепи якоря ЭДС якоря Еаном, электромагнитная мощность Рэм электромагнитный момент при номинальной нагрузке Mном мощность приводного двигателя P1ном. Значения перечисленных параметров приведены в табл. 3. Требуется определить значения параметров, не указанных в таблице.
Источник
Генератор параллельного возбуждения
Принцип самовозбуждения генератора постоянного тока основан на том, что магнитная система машины, будучи намагниченной, сохраняет длительное время небольшой магнитный поток остаточного магнетизма сердечников полюсов и станины Фост (порядка 2—3% от полного потока). При вращении якоря поток
Рис. 28.5. Принципиальная схема (а) и характеристика х.х. (б) генератора параллельного возбуждения
индуцирует в якорной обмотке ЭДС Еост, под действием которой в обмотке возбуждения возникает небольшой ток Iв.ост. Если МДС обмотки возбуждения Iв.ост wВ имеет такое же направление, как и поток Фост , то она увеличивает поток главных полюсов. Это, в свою очередь, вызывает увеличение ЭДС генератора, отчего ток возбуждения вновь увеличится. Так будет продолжаться до тех пор, пока напряжение генератора не будет уравновешено падением напряжения в цепи возбуждения, т. е. U = IВrВ .
На рис. 28.5, а показана схема включения генератора параллельного возбуждения, на рис. 28.5, б — характеристика х.х. генератора (кривая 1) и зависимость падения напряжения от тока возбуждения IВrВ = F(IВ) (прямая 2). Точка пересечения А соответствует окончанию процесса самовозбуждения, так как именно в ней U = IВrВ .
Угол наклона прямой ОА к оси абсцисс определяется из треугольника ОАВ:
где mi — масштаб тока (по оси абсцисс), А/мм; mu — масштаб напряжения (по оси ординат), В/мм.
Из (28.10) следует, что угол наклона прямой IВrВ = F(IВ) к оси абсцисс прямо пропорционален сопротивлению цепи возбуждения. Однако при некотором значении сопротивления реостата rрг сопротивление rВ, достигает значения, при котором зависимость IВrВ = F(IВ) становится касательной к прямолинейной части характеристики х.х. (прямая 3). В этих условиях генератор не самовозбуждается. Сопротивление цепи возбуждения, при которой прекращается самовозбуждение генератора, называют критическим сопротивлением, (rВ.крит ).
Следует отметить, что самовозбуждение генератора возможно лишь при частоте вращения, превышающей критическую nкт. Это условие вытекает из характеристики самовозбуждения генератора (рис. 28.6), представляющей собой зависимость напряжения генератора в режиме х.х. от частоты вращения при неизменном сопротивлении цепи возбуждения, т. е. U = F(n) при rВ = const.
Рис. 28.6. Характеристика самовозбуждения
Анализ характеристики самовозбуждения показывает, что при n
Источник
Указания к решению задачи 4
Для решения задачи 4 необходимо знать материал темы «Электрические машины постоянного тока»:устройство, принцип действия генераторов и двигателей постоянного тока с параллельным возбуждением, формулы, определяющие параметры таких машин. Используя рисунки 20, 21 разберем основные формулы, необходимые для решения задач.
Генератор с параллельным возбуждением (рисунок 20)
1. ЭДС, наводимая в обмотке якоря,
где U, В — напряжение на зажимах генератора;
Rя, Ом – сопротивление обмотки якоря
.
Рисунок 20 Рисунок 21
2. Токи возбуждения Iв = U / Rв
3. Полезная мощность, отдаваемая генератором:
Мощность Р1, Вт — затраченная первичным двигателем на вращение якоря генератора (потребляемая мощность генератором), определяется из формулы КПД генератора
Двигатель с параллельным возбуждением (рисунок 21)
1. Противо — ЭДС, наводимая в обмотке якоря:
где U, В — напряжение источника электрической энергии, питающего обмотку якоря;
Rя, Ом – сопротивление обмотки якоря.
2. Токи якоря, в нагрузке, в обмотке возбуждения:
ток якоря (из формулы противо – ЭДС) Iя = (U — E) / Rя (А)
ток в обмотке возбуждения Iв = U / Rв.
где Rв, Ом – сопротивление обмотки возбуждения.
3. Мощность, потребляемая двигателем от источника электрической энергии,
4. Полезная мощность Р2 на валу двигателя определяется из формулы КПД
5. Момент вращения двигателя
М = 9550Р2(кВт) / n (об/мин),
где n — частота вращения якоря.
Для лучшего понимания приведенных формул и их применения при решении задач рассмотрим примеры.
Пример 10. Генератор постоянного тока с параллельным возбуждением (рисунок 20), имеющий сопротивление обмотки якоря Rя=0,1Ом и сопротивление обмотки возбуждения Rв=60Ом, нагружен внешним сопротивлением R= 4 Ом. Напряжение на зажимах машины U = 220 В.
Определить: 1) токи нагрузки I, в обмотке возбуждения Iв и в обмотке якоря Iя; 2) ЭДС генератора Е; 3) полезную мощность Р2, расходуемую на нагрузке.
Дано: U = 220 В, Rя = 0,1 Ом; Rв = 65 Ом; R = 4 Ом.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Генераторы параллельного возбуждения
Определение. Генераторами параллельного возбуждения называют генераторы, обмотка возбуждения которых питается от ЭДС обмотки якоря и подключена к выводам якоря машины параллельно цепи нагрузки.
Схема генератора параллельного возбуждения. Схема изображена на рис. 1.20. Ток якоря IЯ = I + IВ у щеток разветвляется на ток нагрузкиI и ток возбуждения IВ . Обычно ток возбуждения невелик и составляет (0,01-0,05) IЯ.НОМ . Последовательно с обмоткой возбуждения включается реостат RP для регулирования возбуждения. Реостат позволяет изменять ток возбуждения и, следовательно, напряжение генератора.
Характеристика холостого хода генератора с самовозбуждением всегда снимается при независимом возбуждении (обмотка возбуждения отключается от якоря и запитывается от постороннего источника) и поэтому аналогична характеристике холостого хода генератора с независимым возбуждением.
Самовозбуждение генератора. Так как обмотка возбуждения подключена к выводам якоря, то важное значение имеет процесс первоначального возникновения ЭДС, называемый процессом самовозбуждения.
Рассмотрим процесс самовозбуждения при отключенной нагрузке генератора, т.е. при холостом ходе.
Магнитная цепь машины имеет небольшой остаточный магнитный поток (примерно 2-3% номинального). При вращении якоря в поле остаточного потока в нем наводится небольшая ЭДС, вызывающая некоторый ток в обмотке возбуждения. При соответствующем направлении он увеличивает остаточный магнитный поток, ЭДС в якоре возрастает и процесс развивается лавинообразно до тех пор, пока не будет ограничен насыщением магнитной цепи.
Однако процесс самовозбуждения может развиваться только при определенных условиях, называемых условиями самовозбуждения. Выясним эти условия. Уравнение второго закона Кирхгофа для цепи возбуждения имеет вид: Е + еL= (Rв + Rя)iв, где еL = – d (Liв) /dt – ЭДС самоиндукции цепи возбуждения, возникающая при нарастании тока возбуждения;
L – суммарная индуктивность обмоток возбуждения и якоря; Rв — сумма сопротивлений обмотки возбуждения и регулировочного реостата.
Так как Rя « Rв, то уравнение принимает вид:
Покажем на графике характеристику холостого хода Е = f (Iв) и характеристику цепи возбуждения – прямую Uв = Rв Iв
(рис. 1.21). Отрезок аб, равный Е – Rв Iв = d (Liв) /dt, пропорционален ЭДС самоиндукции цепи возбуждения. Из графика следует, что в точке в пересечения характеристик d (Liв) /dt = 0 рост тока возбуждения прекращается Uв = E и процесс самовозбуждения заканчивается. Положение точки в, называемой рабочейточкой, зависит от сопротивления цепи возбуждения Rв » tgα. Чем оно больше, тем прямая Uв = f (Iв) идет круче и рабочая точка перемещается влево. При некотором сопротивлении цепи возбуждения Rв, кр = tg αкр, называемом критическим, напряжение на выводах генератора близко к остаточной ЭДС Ео и генератор не возбуждается.
Из сказанного вытекают условия, при которых генератор должен возбуждаться:
Ø наличие остаточной намагниченности;
Ø совпадение по направлению остаточного магнитного поля и поля, создаваемого обмоткой возбуждения (несовпадение полей может быть при неправильном подключении выводов обмотки возбуждения или при несоответствующем направлении вращения якоря);
Ø сопротивление цепи возбуждения должно быть меньше критического;
Ø скорость вращения якоря должна быть выше критической скорости.
Внешняя характеристика. Внешняя характеристика генератора параллельного возбуждения U = f (I) при Rв = const и n = nном = const (рис. 1.18, кривые 2 и 2а) отличается от внешней характеристики генератора независимого возбуждения более резким снижением напряжения при увеличении нагрузки. Это объясняется следующим образом: уменьшение напряжения по тем же причинам, что и у генератора независимого возбуждения, приводит к уменьшению тока возбуждения, дополнительному уменьшению ЭДС генератора. При номинальной нагрузке снижение напряжения относительно напряжения холостого хода составляет 10-18%.
Регулировочная характеристика. Регулировочная характеристика генератора Iв = f (I) при U = Uном = const и n = nном = const аналогична регулировочной характеристике генератора независимого возбуждения (рис. 1.19, кривая 2), но идет несколько круче, что объясняется более значительным уменьшением напряжения генератора.
Источник