Меню

Уравнительные токи при параллельной работе генераторов

Параллельная работа генераторов.

Условия параллельной работы генераторов:

1. Равенство напряжений работающего и подключаемого генератора.

2. Равенство их частот.

3. Совпадение порядка чередования фаз.

4. Равенство углов сдвига между ЭДС каждого генератора и напряжением на шинах, (последнее условие сводится к геометрически одинаковому положению роторов генераторов относительно обмоток своих статоров).

После подключения генератора на шины, при соблюдении всех вышеперечисленных условий синхронизации, его ЭДС равна по значению и противоположна по фазе напряжению сети, поэтому ток в цепи генератора равен нулю, т.е генератор работает без нагрузки. Механическая мощность приводного двигателя полностью затрачивается на покрытие потерь. Отсутствие тока в обмотке статора генератора приводит к тому, что обмотка статора не создает вращающегося магнитного поля и в генераторе действует лишь магнитное поле возбуждения, вращающееся вместе с ротором с угловой частотой, но не создающее электромагнитного момента. Если увеличить вращающий момент приводного двигателя, то ротор генератора, получив некоторое ускорение, сместится относительно своего первоначального положения на угол в направлении вращения. На такой же угол окажется сдвинутым вектор ЭДС генератора относи­тельно своего положения, соответствующего режиму холостого хода генератора. В результате в цепи статора появится результирующая ЭДС, которая создаст в цепи обмотки статора ток. Ток создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора, результирующее магнитное поле синхронной машины. Таким образом, с появлением тока в обмотке статора синхронного генератора, работающего параллельно с сетью, генератор получает электрическую нагрузку, а приводной дизель дополнительную механическую нагрузку. При этом механическая мощность приводного двигателя расходуется не только на покрытие потерь х.х генератора, но и частично преобразуется в электромагнитную мощность генератора. Следовательно, электромагнитная мощность синхронного генерато­ра представляет собой электрическую активную мощность, преобразованную из части механичес­кой мощности приводного двигателя. Активная мощность синхронного генератора, отдаваемая в сеть, меньше электромагнитной мощности на значение, равное сумме электрических потерь в обмотке статора и добавочных потерь при нагрузке.

Параллельная работа дизель-генераторов:

Для получения удовлетворительной параллельной работы дизель-генераторов переменного тока необходимо удостовериться, что выполняется требование согласованности регулятора оборотов дизеля и автоматического регулятора напряжения генератора.

Обслуживающий персонал должен иметь четкое представление, что такое активная и реактив­ная мощность и какие устройства контролируют распределение соответствующей нагрузки между дизель-генераторами.

Для многих электромехаников, первый раз имеющих с этим дело, или работавших на судах, с генераторами постоянного тока, эти вопросы зачастую вызывают проблемы, и данная инструкция призвана помочь ответить на многие неясные вопросы.

Синхронизация, подключение генератора на шины обычно не вызывают проблем пока регуля­торы оборотов дизеля, регуляторы напряжения генератора и все электрические контактные сое­динения находятся в нормальном рабочем состоянии. Однако, если регулятор оборотов дизеля, к примеру, работает неправильно, то это является причиной колебания частоты и синхронизировать генератор будет очень трудно, хотя и нужно попытаться. Синхронизация, при неправильных усло­виях ввода генераторов на параллельную работу, может стать причиной обесточивания судна, со всеми вытекающими из этого последствиями, в чем могли убедиться многие электромеханики. Синхронизация, при нарушении условия совпадения по фазе, вызывает увеличение напряжения в обмотке возбуждения, которое при определенных условиях может вызвать выход из строя главного выпрямителя.

Распределение активной нагрузки (kW)

Когда генераторы синхронизированы и подключены на шины, они становятся электрически соеди­ненными вместе, а это значит, что напряжение и частота одинаковы для всех генераторов, подклю­ченных в параллель. Увеличение подачи топлива на одном дизеле, не будет причиной повышения частоты, соединенного с ним генератора, относительно других. Результат увеличения подачи топ­лива может быть следствием принятия на себя большей части от общей активной нагрузки одним из генераторов, в то же время вызывая небольшое повышение частоты на шинах. После подключе­ния генератора на параллельную работу, активная (kW) нагрузка распределяется между работаю­щими генераторами вручную, соответствующими регуляторами оборотов дизеля на панели ГРЩ.

Дальнейшее распределение активной нагрузки при любых изменениях осуществляются автоматически, при условии правильно настроенных регуляторах дизелей! Это автоматическое распределение активной нагрузки обусловлено наклоном характеристики регулятора оборотов дизеля, который уменьшает частоту вращения (около 4% без нагрузки) и увеличивает частоту вращения при полной нагрузке. Например, если на ненагруженном дизеле частота 62 Гц, то при полной загрузке частота будет около 59.5 Гц.

Если у ненагруженного и полностью нагруженного дизеля изменение частоты вращения происходит одинаково для всех машин, то и распределение активной нагрузки между ними будет одинаковым.Если изменение частоты вращения неодинаково, то и распределение наг­рузки будет не синхронным.

Для того, чтобы определить правильно ли происходит уменьшение частоты вращения дизеля, рассмотрим следующий пример: допустим, что работает один генератор (назовем его №1), он полностью нагружен и его частота равна 61 Гц. Проверим падение частоты, при вводе на парал­лельную работу генератора №2 (ненагруженного, но уже подключенного на шины). Распределе­ние нагрузки будет осуществляется только с помощью регулятора частоты вращения дизеля №2, поэтому частота на шинах все еще 61 Гц и ваттметр ДГ№2 показывает почти нулевую нагрузку. При воздействие на регулятор оборотов ДГ№2, нагрузка с ДГ№1 будет переходить на ДГ№2, изменяя подачу топлива на ДГ№1, когда ваттметр ДГ№1 покажет «О», нагрузка полностью перейдет на ДГ№2 и мы можем проверить частоту на шинах, она будет около 58.5 Гц или на 4% ниже первоначального значения.

Также может быть проверен другой дизель и если уменьшение частоты вращения при полной нагрузке у разных машин не одинаково, то необходимо настраивать регуляторы оборотов дизелей. Другой, заслуживающий внимания момент, это демпфирование. Если демпфирование слишком слабoe, есть опасность, что стрелка ваттметра начнет колебаться из-за того, что регуляторы будут стремиться погасить внезапные забросы нагрузки. Неустойчивое колебание нагрузки, определяемое по стрелке ваттметра и вызванное нестабильностью регуляторов дизелей, может в конце концов привести к полному обесточиванию судна! Люфт, мертвый ход, или износ в регуляторе оборотов дизеля, может привести тому же самому результату.

Распределение реактивной нагрузки (kVAr)

Хорошо известно, что в источниках переменного тока нагрузка не чистая активная (kW), a сумма активной и реактивной (kVar) нагрузки.

Активнаянагрузка, измеряемая в (kW), это мощность, развиваемая дизелями и передаваемая потребителям электроэнергии (электродвигателям, источникам тепла, лампам и т.д) и в дальнейшем, преобразованная в крутящий момент, тепло и свет.

Реактивнаянагрузка, измеряемая в (kVAr), включает в себя магнитные силы в электродвигателях, трансформаторах и т.д. Величина реактивной мощности не влияет наактивную нагрузку, а это значит, что дизеля не воспринимают высокую или низкую величину реактивной мощности. Для генератора, однако, эта нагрузка очень важна, как общая нагрузка!

Общаянагрузка, называемая так же мнимая (кажущаяся), измеряется в (kVA). Реактивная нагрузка должна быть равномерно распределена между генераторами, и это распределение регулируется тематически регуляторами напряжения генераторов!

Как это происходит: мы знаем, что когда генераторы работают нормально, их напряжения могут изменяться в незначительной степени от значения регулируемого реостатом на контрольной плате регулятора напряжения. Любые попытки выполнить то же самое на, работающих в параллели генераторах, не будут вызывать изменения напряжения в соответствующем генераторе, подключенном на общую шину, и конечно, следует устанавливать равные значения напряжения генераторов, единственный результат этой попытки, это изменение фактора мощности определенного генератора, т.е распределение их общей реактивной нагрузки, вместе с понижением или повышением напряжения на шинах. Следовательно, когда генераторы работают в параллельном режиме, определение реактивной нагрузки может быть выставлено подстроечным потенциометром на самом регуляторе напряжения (на некоторых судах он выведен прямо в генераторную секцию ТЩ). Последующее увеличение реактивной нагрузки должно быть автоматически перераспределено между работающими генераторами. Это достигается путем увеличения или уменьшения напряжения в регуляторе, что соответственно уменьшает или увеличивает реактивную нагрузку.

Защита генераторов.

U/S (Under Speed)- это защита генератора от перевозбуждения, при снижении оборотов дизеля. Когда обороты дизеля уменьшаются до значений, установленных на подстроечном сопротивлении U/S, загорается красный светодиод и напряжение генератора начинает уменьшаться до значения 10В. на 1Гц.

Для того, чтобы правильно настроить защиту от перевозбуждения, необходимо: запустить дизель, вывести его на номинальные обороты 60Гц и затем уменьшить на 6Гц частоту вращения, т.е по­лучить 54Гц на шинах ГРЩ. Затем необходимо потенциометром U/S добиться загорания красного светодиода. После этого снова вывести дизель на номинальные обороты 60Гц и потенциометр U/S больше никогда больше не перестраивать!

Читайте также:  Почему падает ток при нагрузке

STABILITY- сопротивление для устойчивости. Предназначено для удержания постоянного напряжения, при повышении или понижении нагрузки. Регулировка потенциометра «STAB» может быть осуществлена только для генератора, работающего на холостом ходу и заключается в следующем: устанавливаем потенциометр в среднее положение и начинаем медленно вращать по часовой стрелке, при этом чувствительность дизеля возрастает, и напряжение начинает колебаться. Вращение против часовой стрелки от среднего положения уменьшает чувствительность дизе­ля, и колебания напряжения уменьшаются. Регулировку производить крайне осторожно, из-за возможного большого падения напряжения при увеличении нагрузок самоиндукции. Возникновение э.д.с. в электрической цепи в результате изменения магнитного потока, создава­емого током, в той же самой цепи, называется самоиндукцией.

VOLT- сопротивление для регулировки напряжения, работает в паре с дополнительным подстроечным резистором, расположенном на самом регуляторе напряжения, или на генератор­ных панелях ГРЩ. Регулировка потенциометра «VOLT» следующая: вывести дизель на номи­нальные обороты, перевести потенциометры (VOLT) в среднее положение, отрегулировать напряжение генератора (Ux.x должно быть равно 450-452В), дополнительным потенциометром на ГРЩ или на регуляторе добиться наиболее точных значений.

Все регулировки U/S, STAB, VOLT должны производится без нагрузки на генераторе, с выключенным автоматом, т.е на холостом ходу.

P/F — сопротивление для регулировки реактивной нагрузки при параллельной работе генера­торов. Регулировка потенциометра «P/F» следующая: выравниваем активную нагрузку на всех работающих генераторах, сравнивая показания щитовых амперметров (кА) на ГРЩ. На регуляторе генератора, требующего регулировки, переводим потенциометр в среднее положение и начинаем вращение против часовой стрелки, следя по кА за чувствительностью потенциометра. Вращение потенциометра по часовой стрелке уменьшает реактивную нагрузку соответствующего генера­тора. Регулировкой P/F добиться равномерного распределения реактивной нагрузки между всеми, работающими генераторами, при одинаковой активной нагрузке!

Требования к береговому электроснабжению.

Во время питания электрооборудования судна с берега:

1. Обращать особое внимание на состояние и параметры электрооборудования обеспечивающего питание с берега (клеммы, АВ, контакторы, кабель, и т.д).

2. Обеспечивать постоянный контроль суммарного тока нагрузки судовых потребителей.

3. Рассчитывать предполагаемую нагрузку, до подключения потребителей.

4. Обеспечивать постоянный контроль температуры кабеля берегового питания

5. Исключить возможность механических воздействий и повреждения кабеля берегового питания

6. Производить обозначение кабеля берегового питания соответствующими табличками.

7. При наличии на ГРЩ переключателя берегового питания на шины 440В и 220В обращать внимание на его положение

8. Если напряжение СЭС составляет 440В, то перед тем как перейти на береговое питание 380В, производить переключение обмоток трансформаторов освещения, если предусмотрено, в целях повышения вторичного напряжения до 220В. Перед переходом на СЭС не забывать восстанавливать схему соединения обмоток.

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

04.10.2014

Параллельная работа генераторов переменного тока

Параллельная работа генераторов переменного тока требует соблюдения более сложных условий, чем параллельная работа генераторов постоянного тока.

Для включения синхронного генератора параллельно с другим необходимо:

1) равенство напряжений работающего и подключаемого генераторов;
2) равенство их частот;
3) совпадение порядка чередования фаз;
4) равенство углов сдвига между э. д. с. каждого генератору и напряжением на шинах.

Последнее условие сводится к геометрически одинаковому наложению роторов генераторов относительно обмоток своих статоров.

Процесс приведения генераторов в такое состояние, при котором все перечисленные условия будут выполнены, называется синхронизацией генераторов.

Если генераторы синхронизированы, то включение их на параллельную работу протекает спокойно, без появления в системе каких-либо дополнительных толчков тока. Если хотя бы одно из условий не выдержано, то между генераторами появляются значительные уравнительные токи, которые не позволяют осуществить параллельную работу генераторов, а в некоторых случаях могут даже вызвать их повреждение.

Рассмотрим параллельную работу двух синхронных генераторов.

Если генераторы одинаковы, электродвижущие силы и скорости вращения их равны, то при отсутствии внешней нагрузки (т. е. при холостом ходе) в цепи обмоток статоров генераторов тока не будет, так как э д. с. взаимно уравновешиваются.

Уравнительный ток

При включении внешней нагрузки оба генератора начнут отдавать одинаковую, мощность. При индуктивной нагрузке напряжение каждого уменьшится на одну и ту же величину, причем между э. д. с. генератора и его напряжением появится некоторый сдвиг, по фазе определяемый углом δ. Мощность, отдаваемая генератором во внешнюю цепь, пропорциональна этому углу.

Предположим, что мы увеличили возбуждение, а следовательно, и э. д. с. первого генератора и уменьшили возбуждение второго так, что общее напряжение генераторов осталось прежним.
Так как мощность, развиваемая первичными двигателями, осталась неизменной, то как общая мощность, так и мощности, отдаваемые каждым из генераторов, также не изменились. Не изменился и ток внешней нагрузки: I — общий и I/2 — для каждого генератора.

Вместе с тем, так как э. д. с. обоих генераторов уже не равны, то между генераторами появится уравнительный ток Iу, протекающий только по цепи генераторов. Распределение токов в этом случае показано на рис. 1.

Как видим, ток в первом генераторе будет равен геометрической сумме токов внешней нагрузки I/2 и уравнительного Iу, а во втором — геометрической их разности.

Индуктивные сопротивления обмоток статоров генераторов значительно больше их активных сопротивлений. В связи с этим уравнительный ток будет отставать от разности э. д. с. генераторов почти на 90°.

При этом условии при сложении токов в первом генераторе и вычитании их во втором результирующий ток будет отставать от напряжения в каждом генераторе на различный угол.

Иными словами, каждый из генераторов будет работать при своем коэффициенте мощности, отличном от коэффициента мощности внешней сети. Если активная мощность, потребляемая внешней нагрузкой, близка к суммарной мощности обоих генераторов, то у перевозбужденного генератора действующий ток превысит номинальный ток генератора, чего допускать нельзя (перегрузка по току).

Отсюда следует, что при параллельной работе синхронных генераторов необходимо стремиться к тому, чтобы все генераторы работали с одним и тем же коэффициентом мощности, равным коэффициенту мощности сети.

Предположим теперь, что не изменяя возбуждения воздействием на регулятор первичного двигателя первого генератора, мы увеличили ему подачу топлива. В этом случае первичный двигатель разовьет увеличенный вращающий момент, под влиянием которого ротор первого генератора забежит вперед относительно ротора второго генератора, вращаясь в дальнейшем с прежней синхронной скоростью. Вследствие расхождения по фазе электродвижущих сил генераторов в их цепи возникнет разность э. д. с., под влиянием которой появится уравнительный ток.

Но уравнительный ток по своей фазе будет почти совпадать с э. д. с. первого генератора, т. е. явится для него током нагрузки, и будет почти противоположным э. д. с. второго генератора (будет уменьшать его нагрузку). В этом случае каждый из генераторов будет нести нагрузку, пропорциональную вращающему моменту, развиваемую его первичным двигателем.

Читайте также:  Короткое замыкание в цепи синусоидального тока

При этом полюса более нагруженного генератора будут в пространстве находиться впереди полюсов менее нагруженного. Последнее обстоятельство равносильно тому, что у более нагруженного генератора угол сдвига фаз между э. д. с. и напряжением δ1 больше, чем у менее нагруженного δ2.

Следует отметить, что параллельная работа синхронных генераторов проходит устойчиво только при определенных значениях угла δ. Наиболее устойчива она при угле δ, равном 0°, что соответствует холостой работе генераторов; при угле, равном 90°, генератор выпадает из синхронизма и параллельная работа становится невозможной.

Неизменность угла δ зависит от постоянства скорости вращения первичного двигателя. При колебании скорости вращения вследствие изменения нагрузки или по каким-либо другим причинам угол δ может измениться до недопустимой величины. Поэтому надежность и устойчивость параллельной работы синхронных генераторов в значительной мере зависит от качества работы регуляторов оборотов первичных двигателей.

Необходимое для перераспределения нагрузок генераторов дистанционное управление подачей топлива первичным двигателям обеспечивается применением регуляторов с серводвигателем или с электромагнитным приводом клапанов подачи топлива. При включении напряжения серводвигатель или соленоид открывает клапан подачи топлива или пара. Степень открытия клапана, а следовательно, и количество подаваемого топлива регулируется продолжительностью включения серводвигателя или числом включенных соленоидов.

Уравнительное соединение между обмотками возбуждения генераторов

У синхронных генераторов с самовозбуждением и саморегулированием напряжения величина тока возбуждения, зависит от тока в цепи статора. В свою очередь при параллельной работе синхронных генераторов изменение тока возбуждения генератора влияет на величину его реактивного тока. Отсюда вытекает, что при параллельной работе синхронных генераторов с самовозбуждением и саморегулированием напряжения необходимо принимать специальные меры для обеспечения правильного распределения реактивного тока между ними.

В качестве такого мероприятия у генераторов одинаковой мощности предусматривают уравнительное соединение между их обмотками возбуждения (на стороне постоянного тока), как это изображено на рис. 2.

При замыкании автоматов генераторов подается ток на катушки контакторов К1 и К2, подключающих обмотки возбуждения к уравнительным шинам.

В результате параллельного соединения обмоток возбуждения любое изменение возбуждения одного генератора отражается и на величине возбуждения второго. Поэтому распределение реактивного тока между ними сохраняется правильным.

При параллельной работе генераторов разной мощности, уравнительное соединение выполняется в цепях схемы регулирования напряжения на стороне переменного тока (рис. 3).

Источник

Параллельная работа генераторов

Параллельная работа генераторовНа электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Принципиальная схема параллельной работы генераторов

Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.

Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

Векторные диаграммы для случаев отклонения от условий точной синхронизации

Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

Читайте также:  Током по голове точечно

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Векторная диаграмма синхронизации генераторов при неравенстве частот

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Кривые напряжения биений

Рис. 5. Кривые напряжения биений.

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна

Источник



Параллельная работа генераторов постоянного тока

Дата публикации: 25 февраля 2013 .
Категория: Статьи.

Общие положения

В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого, параллельного или смешанного возбуждения. При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Включение на параллельную работу

Схема параллельной работы двух генераторов параллельного возбуждения показана на рисунке 1. Пусть генератор 1 уже работает на сборные шины и необходимо подключить к этим шинам генератор 2.

Тогда надо соблюсти следующие условия: 1) полярность генератора 2 должна быть такой же, как и генератора 1 или шин Ш, т. е. положительный (+) и отрицательный (–) зажимы генератора 2 должны с помощью рубильника или другого выключателя Р2 соединиться с одноименными зажимами сборных шин; 2) электродвижущая сила (э. д. с.) генератора 2 должна равняться напряжению на шинах. При соблюдении этих условий при подключении генератора 2 к шинам с помощью рубильника не возникает никакого толчка тока и этот генератор после его включения будет работать без нагрузки, на холостом ходу.

Рисунок 1. Схема параллельной работы генераторов параллельного возбуждения

Для выполнения и проверки этих условий включения поступают следующим образом. Генератор 2 приводят во вращение с номинальной скоростью и возбуждают до нужного напряжения. Его напряжение измеряют с помощью вольтметра V1 и вольтметрового переключателя П, для чего последний ставят в положение 2 – 2. Напряжение шин измеряют тем же вольтметром в положении переключателя ШШ. Чтобы одновременно проверить соответствие полярностей, вольтметр V1 должен быть магнитоэлектрического типа. Тогда при включении вольтметра по схеме, изображенной на рисунке 1, отклонения его стрелки при правильной полярности генератора 2 и шин будут происходить в одну и ту же сторону. Если полярность генератора 2 неправильна, то необходимо переключить два конца от его якоря. Нужное значение напряжения генератора достигается путем регулирования его тока возбуждения iв2 с помощью реостата.

Возможен также другой способ контроля правильности условий включения – с помощью вольтметра V2, подключенного к зажимам одного полюса рубильника Р2. Если другой полюс (нож) рубильника включить, то при равенстве напряжений и правильной полярности генераторов показание вольтметра V2 будет равно нулю.

При включении генератора 2 с неправильной полярностью в замкнутой цепи, образованной якорями обоих генераторов (рисунок 1) и шинами, э. д. с. обоих генераторов будут складываться. Так как сопротивление этой цепи мало, то возникают условия, эквивалентные короткому замыканию, что приводит к аварии. При правильной полярности, но неравных напряжениях генераторов в указанной цепи возникает уравнительный ток

значение которого также может оказаться большим.

При включении нагрузки уравнительный ток вызывает увеличение тока одного генератора и уменьшение тока другого, в результате чего генераторы нагружаются неодинаково.

Параллельная работа генераторов параллельного возбуждения

При параллельной работе двух или более генераторов их напряжения U всегда равны, так как генераторы включены на общие шины. Поэтому для случая работы двух генераторов их уравнения можно записать в следующем виде:

U = Eа1Iа1 × Rа1 = Eа2Iа2 × Rа2, (1)

После включения генератора 2 (рисунок 1) на шины его можно нагрузить током. Для этого нужно увеличить э. д. с. генератора Eа2, которая станет больше U, в результате чего в якоре генератора 2 возникнет ток Iа2 [смотрите уравнение (1)]. Тогда при неизменном токе нагрузки ток Iа1 уменьшается. Если э. д. с. Eа1 останется постоянной, то разность Eа1Iа1 × Rа1 не будет уже равна прежнему значению напряжения на шинах и U увеличится. Поэтому для поддержания U = const одновременно с увеличением Eа2 нужно уменьшать Eа1. Изменение Eа1 и Eа2 возможно двояким путем: изменением тока возбуждения iв или скорости вращения n. В обоих случаях генератор и его первичный двигатель изменят свою мощность. В эксплуатационных условиях обычно изменяют ток возбуждения. В этом случае первичный двигатель работает на своей естественной характеристике n = f(P). При изменении нагрузки двигателя его скорость также изменится и его регулятор в случае использования теплового или гидравлического двигателя изменит подачу топлива, пара или воды в двигатель.

Таким образом, если желательно, например, генератор 1 разгрузить и передать его нагрузку на генератор 2, то поступают следующим образом: уменьшают iв1 (или n1) и одновременно увеличивают iв2 (или n2) до тех пор, пока не будет I1 = 0. После этого генератор 1 можно отключить от сети. Если бы ток iв1 был уменьшен слишком сильно, то возникло бы положение, при котором Eа1 div > .uk-panel’>» data-uk-grid-margin>

Источник