Меню

Усилители низких частот переменного тока

Характеристики усилителей: классификация, диаграммы, основные параметры

рис. 2.1

Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

  1. Классификация усилителей
  2. По частоте усиливаемого сигнала:
  3. По роду усиливаемого сигнала
  4. По функциональному назначению
  5. Амплитудная характеристика усилителя
  6. Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.
  7. Переходная характеристика усилителя

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

По частоте усиливаемого сигнала:

  • усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;
  • широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;
  • избирательные усилители, усиливающие сигналы узкой полосы частот;

По роду усиливаемого сигнала

  • усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;
  • усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

По функциональному назначению

  • усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР:

где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

Uвых , Iвых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Рвх, Рвых — мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

где Рист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:

где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;

∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

рис. 2.2

Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

рис. 2.3

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

рис. 2.4

Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K / KН и МВ = K / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). рис. 2.5Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6. рис. 2.6Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

рис. 2.7

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

рис. 2.8

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

Источник

Усилитель

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

динамический микрофон

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Усилитель

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

зенитный комплекс тор

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Что такое черный ящик в электронике

очень черный ящик

В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.

Читайте также:  В сварочном инверторе постоянный или переменный ток

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Усилитель

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

услитель четырехполюсник

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

Усилитель

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

усилитель на транзисторе

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

усилитель на транзисторе принцип работы

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

усилитель в роли черного ящика

Обобщенная схема усилителя

Она выглядит примерно вот так:

обобщенная схема усилитель

Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

усилитель напряжения коэффициент

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

схема усилителя

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

Усилитель

где KI – коэффициент усиления по току

Iвых – сила тока в цепи нагрузки, А

Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Читайте также:  Ревизия двигателей постоянного тока

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

Усилитель

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

Усилитель

KP – коэффициент усиления по мощности

Pвых – мощность на выходе усилителя, Вт

Pвх – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Усилитель

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

Усилитель

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

UВых – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Усилитель

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

cos φ – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Усилитель

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.

Источник

XI Международная студенческая научная конференция Студенческий научный форум — 2019

Усилители низкой частоты

Усилители низкой частоты

Усилители низкой частоты предназначены для усиления гармонических составляющих непреобразованного передаваемого или принимаемого сообщения. Частотная характеристика усилителей низкой частоты охватывает спектральный диапазон от десятков Гц до десятков кГц (для УЗЧ), а для некоторых типов видеоусилителей высшая рабочая частота может составлять сотни кГц.

Основные характеристики усилителя низкой частоты

УНЧ являются элементом усилительного устройства, которое должно содержать также источник сигнала, нагрузку и источник питания (рис. 1).

Основное назначение УНЧ – усиливать мощность сигнала, т.е. при подаче на вход УНЧ электрического сигнала малой мощности получать на нагрузке сигнал той же формы, но большей мощности. Для усиления мощности УНЧ преобразует энергию источника питания с помощью усилительных приборов. В некоторых случаях УНЧ имеет и вспомогательное значение – осуществляет коррекцию формы сигнала.

Структурная схема УНЧ

По полосе усиливаемых частот (от нижней частоты диапазона до верхней) УНЧ делятся на усилители постоянного и переменного тока. Усилители постоянного тока (УПТ) – усилители медленно изменяющихся напряжений или токов, усилители переменного тока усиливают только переменную составляющую тока в необходимой спектральной полосе. Усилители звуковых частот – УНЧ, усиливающие сигналы в полосе частот, воспринимаемых ухом человека.

Основными элементами структурной схемы УНЧ (рис. 1) являются предварительный усилитель (ПУ) и усилитель мощности (УМ). К дополнительным элементам УНЧ относятся: цепи частотной коррекции и цепи обратной связи (ОС), кроме того в состав УНЧ часто включают регулятор усиления.

Усилитель мощности может содержать один или несколько каскадов усиления и предназначен для создания необходимой мощности в нагрузке.

Предварительный усилитель (или усилитель напряжения) служит для усиления слабого входного сигнала и создания необходимого уровня напряжения на входе усилителя мощности, он также может содержать один или несколько усилительных каскадов, причем часто в качестве входного каскада применяют эмиттерные (истоковые) повторители для лучшего согласования с источником сигнала.

Регулятор усиления в усилителях звуковой частоты используется в качестве регулятора громкости.

Цепи коррекции используются для изменения частотной характеристики УНЧ, в частности, к цепям частотной коррекции относится регулятор тембра. Коррекция частотной характеристики УНЧ часто применяется для компенсации искажений АЧХ источника входного сигнала (например, звука-снимающей магнитной головки в магнитофонах) или АЧХ нагрузки (например, звуковых колонок).

2.Простой усилитель низкой частоты

Этот усилитель можно встроить в любую маломощную аппаратуру с низковольтным питанием: приёмники, рации, слуховые аппараты и другая подобная аппаратура.

Максимальная выходная мощность (Нагрузка 8Ом, 1кГц) = 0,3 Вт

Номинальное напряжение питания (0,3Вт, 8 Ом) = 3в

THD+N (при максимальной выходной мощности, 1кГц) = 1 – 1,5%

Принципиальная схема усилителя

Устройство и принцип работы

Усилитель состоит из двух узлов: входной каскад на транзисторе Т1 и выходной двухтактный на транзисторах Т2 – Т5. Сигнал, усиленный транзистором Т1 поступает в нагрузку R1 и выходной каскад. Транзисторы выходного каскада образуют два так называемых «плеча» выходного каскада. Транзисторы в этих «плечах» разной структуры, что является обязательным условием для данного усилителя. Поскольку транзистор КТ315 открывается положительным, а КТ361 отрицательным напряжением, то и «плечи» выходного каскада образованные ими усиливают лишь ту полуволну сигнала, поступающего с транзистора Т1, которая «открывает» транзисторы образующие их. Получается так: Т3 и Т4 усиливают положительные полуволны сигнала, Т2 и Т5 отрицательные. В точке соединения эммитеров транзисторов Т4 и Т5 происходит объединение сигнала и его подача в нагрузку. Так как для данного усилителя характерны искажения типа ступенька, которые неизбежно появятся при работе данного усилителя, для их ослабления включается резистор R2. Этот резистор создаёт небольшое напряжение смещения на базах транзисторов и ослабляет искажения сигнала.

Читайте также:  Релейная защита ток срабатывания

Данный усилитель требует тщательной настройки, а именно:

Подбором резистора R1 устанавливается начальный ток покоя транзисторов (ток протекающий через транзисторы при отсутствии сигнала). Подбором этого резистора необходимо установить ток покоя на уровне 5 — 7 мА.

Подбором сопротивления резистора R5 необходимо установить напряжение в точке соединения транзисторов выходного каскада равное половине питающего напряжения, то есть 1.5 В.

Возможные дополнения

Если то устройство к которому подключается усилитель не имеет регулятора тембра или сигнал снимаемый с него слаб, можно собрать предварительный усилитель.

Таким образом рассмотрено построение электронного устройства.

Кибакин В.М. Основы теории и разработки транзисторных низкочастотных усилителей мощности. – М.: Радио и связь, 1988. – 240 с.

Электротехника и основы электроники. / Под ред. О.П. Глудкина, Б.П. Соколова. – М.: Высш. шк., 1993.

Джонс М.Х. Электроника – практический курс. – М.: Постмаркет, 1999. – 528 с.

Хоровиц П., Хилл У. Искусство схемотехники. –М.: Мир, 1986. – 600 с.

Манаев Е.И. Основы радиоэлектроники. – М.: Радио и связь, 1985. – 488 с.

Забродин Ю.С. Промышленная электроника. – М.: Высш. шк., 1982. – 496 с.

Колонтаевский Ю.Ф. Лабораторный практикум по радиоэлектронике. – М.: Высшая школа, 1989. – 206 с.

Источник



ПРИНЦИП УСИЛЕНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

Назначение и классификация усилителей.Усилители переменного напряжения являются наиболее распрост­раненным типом электронных усилителей на дискретных элементах. Связь усилителя с источником входных сигна­лов и нагрузкой, а также между отдельными каскадами в многокаскадных усилителях переменного напряжения в большинстве случаев осуществляется через раздели­тельные RC-цепи и реже — с помощью трансформаторов. При таких связях усиливается и передается в нагрузку только переменная составляющая сигнала, несущая по­лезную информацию. Лишь в интегральных усилителях ввиду сложности изготовления катушек индуктивности и конденсаторов большой емкости применяются гальва­нические связи, пропускающие как переменные, так и постоянные составляющие усиливаемого сигнала. Общими требованиями, предъявляемыми к цепям межкаскадных связей, являются минимальные потери усиления, мини­мальные вносимые искажения, достаточная электриче­ская прочность.

Среди усилителей переменного напряжения видное место занимают усилители низкой частоты (УНЧ), усиливающие электрические колебания в диапа­зоне частот от единиц герц до десятков килогерц. УНЧ, работающие в диапазоне частот 16 Гц. 20 кГц, называют усилителями звуковой частоты (УЗЧ).

УНЧ применяются в радиоприемных и радиотранс­ляционных устройствах, системах автоматического регу­лирования и телеметрии и др.

Напряжение на входе УНЧ может изменяться в ши­роких пределах: от долей микровольта до нескольких вольт. Значения напряжений усиленных электрических колебаний могут быть от десятых долей вольта до сотен вольт, а их мощность — от нескольких милливатт до сотен ватт и киловатт. Для получения такого усиления напря­жения и мощности УНЧ должен быть, как правило, много­каскадным. Первые каскады образуют предварительный усилитель, который осуществляет в основном усиление на­пряжения. Такие усилители называют усилителями на­пряжения низкой частоты (УННЧ). Основное требование, предъявляемое к УННЧ — это получение максимального коэффициента усиления напряжения при минимальных искажениях усиливаемых электрических колебаний.

По принципу построения усилительные каскады могут быть однотактными и двухтактными.

Усилители напряжения низкой частоты могут быть выполнены на электронно-управляемых лампах, бипо­лярных или полевых транзисторах. В последнее время очень часто используются УННЧ на интегральных микро­схемах.

В качестве нагрузок в УННЧ могут использоваться резисторы, трансформаторы, обмотки электродвигателей, динамические головки громкоговорителей и др.

Из транзисторных УННЧ наибольшее применение получили усилители с общим истоком (ОИ) и общим эмиттером (ОЭ). Это связано с тем, что такие усилители обеспечивают получение большого коэффициента усиле­ния при сравнительно высоком входном сопротивлении. Для уменьшения частотной зависимости технических по­казателей в транзисторных УННЧ в качестве нагрузок обычно используют резисторы.

Работа усилителя.Схема простейшего усилителя на полевом транзисторе, включенном по схеме с ОИ и ре-зистивной нагрузкой Rc, показана на рис. 5.1, а.

Источник с ЭДС еBX создает на входе усилителя (рис. 5.1, б) на зажимах 1 — 1 переменное напряже­ние uвх, изменяющееся по закону .

При неработающем источнике усилитель находится в режиме покоя (интервал времени ), который характеризуется постоянными напря-

жениями затвора и стока и током . Ток покоя про­текает через резистор нагрузки Rc и создает на его со­противлении напряжение , поэтому

В момент времени включается источник перемен­ного напряжения и напряжение затвора начинает изме­няться по закону

Режим работы активного элемента, при котором хотя бы один из его параметров изменяется во времени, на­зывается динамическим. Следовательно, с момента вре­мени ПТ и усилитель в целом из режима покоя (стати­ческого режима) переходят в динамический режим.

Во время положительного полупериода входного на­пряжения (интервал ) напряжение затвора стано­вится менее отрицательным. Это вызывает увеличение тока стока и падения напряжения на резисторе Rc. Напряже­ние в соответствии с выражением (5.1) умень­шается.

Во время отрицательного полупериода входного на­пряжения (интервал ) напряжение становится более отрицательным, чем в режиме покоя. Это приводит к уменьшению тока стока, падения напряжения на ре­зисторе Rс и увеличению напряжения .

Таким образом, под действием переменной составляю­щей напряжения затвора ток стока, напряже­ние стока и напряжение на нагрузке преобразуются из постоянных, какими они были в режиме покоя, в пульси­рующие, содержащие постоянные и переменные состав­ляющие:

Из последнего уравнения видно, что изменение на­пряжения на резисторе Rc численно равно изменению напряжения стока, т. е. . Поэтому последнее уравнение можно записать в виде

Знак «минус» в этом выражении означает противо-фазность переменных составляющих напряжений стока и затвора.

Так как , то при соответствующем выборе сопротивления резистора Rc можно получить , т. е. усиление входного напряжения.

Усиленное переменное напряжение поступает на выход усилителя через разделительный конденсатор Ср. Емкость этого конденсатора должна быть достаточно большой, чтобы на его сопротивлении падала лишь незначитель­ная часть переменной составляющей напряжения . При этом можно считать, что .

Схема простейшего усилителя на биполярном тран­зисторе, включенном с ОЭ, показана на рис. 5.2, а, а принцип его работы иллюстрируется графиками, приве­денными на рис. 5.2, б.

Усилители, приведенные на рис. 5.1, а и 5.2, а, на­зываются инвертирующими, так как у них фаза выходного напряжения противоположна фазе входного напряжения.

В рассмотренных усилителях выходные напряжения создаются переменными составляющими токов стока и коллектора, значительно превышающими по амплитуде входные токи — токи затвора и базы. Поэтому усиление напряжения происходит при одновременном усилении мощности.

Усилитель можно выполнить на биполярном транзи­сторе, включенном посхеме с общей базой (рис. 5.3). Физические процессы в таком усилителе ничемнеотли­чаются от физических процессов в усилителе на БТ с ОЭ. С помощью графиков, отображающих изменения напря­жений и токов при действии на входе усилителя пере­менного напряжения, можно убедиться в том,

что выход­ное напряжение в усилителе на БТ с ОБ совпадает по фазе с входным. Такой усилитель называют неинверти­рующ и м.

Источник