Меню

Увеличивать напряжение при передачи энергии

Зачем поднимают напряжение для передачи электричества на большие расстояния?

Тема эта довольно избитая, но всё же я предложу на суд читателей и свой вариант статьи. Зачем? Обычно люди хорошо понимают объяснения, написанные людьми с созвучным им способом мышления. Поэтому легко понятное для одного человека описание может ввести в ступор другого при абсолютно равном интеллекте и опыте обоих. Поэтому, чем больше будет разных вариантов изложений, тем лучше.

Как обычно, я не буду упоминать лишних деталей, не относящихся к сути, и мешающих восприятию основного материала. Допущу некоторые упрощения. Статья не для профессионалов, конечно.

На примере розетки

Итак, генераторы на электростанциях вырабатывают электрическую энергию. Её передают по линиям электропередачи в наши дома, где мы её потребляем. Мы привыкли, что потребляемая нами электроэнергия базируется на напряжении 230 вольт и токе, обычно не превышающим 16 ампер на розетку (в зависимости от потребляемой мощности прибора, который мы воткнём в неё). Если мы воткнём в розетку нагреватель, вызывающий в сети ток 16 ампер, то это будет означать, что мы потребляем из сети мощность 230 В * 16 А = 3680 ватт. Запомним — мы потребляем не напряжение и не ток, а мощность. То есть, не вольты и не амперы, а ватты. Собственно, их нам и считает счётчик электроэнергии.

Ток 16 ампер, проходя от ввода в дом до розетки по проводам сечением, скажем, 2,5 мм², нагревает их. Чем больше ток или меньше сечение провода, тем больше нагрев, потому что несущим ток электронам приходится протискиваться через атомы проводника и постоянно соударяться с ними, что вызывает их (атомов) тепловые колебания (тепловые колебания кристаллической решётки, в которую выстроены эти атомы). Большему току (т.е. большему количеству электронов) нужно большее сечение провода, чтобы соударения распределялись в большем объёме и не вызывали перегрев.

Провод (особенно малого сечения) сам по себе является сопротивлением, и работает, как тот же нагреватель. То есть, при нагреве провода мы теряем на нём часть мощности, которую мы хотели бы довести до нагревателя.

Что можно сделать, чтобы передать ту же мощность от ввода в дом до розетки через то же сечение с меньшими потерями? Поскольку нагрев провода даёт именно проходящий по проводу ток, а не толкающее его напряжение, то, очевидно, нам и надо снизить ток, скомпенсировав это снижение поднятием напряжения.

Предположим, мы подняли на вводе в дом трансформатором напряжение с 230 вольт до 1000 вольт. Для передачи той же мощности нам достаточно будет тока 3680 Вт / 1000 В = 3,68 ампер вместо 16! Проверяем: 1000 В * 3,68 А = 3680 ватт. Но мы не можем просто так воткнуть наш нагреватель в 1000 вольт, поскольку его сопротивление таково, что сразу же вызовет огромный ток в сети, куда больше 16 А. Нам надо снова понизить напряжение перед розеткой до 230 вольт. То есть, поставить понижающий трансформатор. После этого мы сможем запитать нагреватель, и при этом экономить на снижении потерь в проводах внутри дома.

В магистральных линиях

Рассмотренная в предыдущей главе ситуация с поднятием напряжения на вводе в дом и опусканием его у каждой розетки, естественно, экономически нецелесообразна. Понадобится несколько трансформаторов, да и потери в самих трансформаторах превысят выигрыш от уменьшения потерь в проводах. Проще уж, наверное, положить провод толще или плюнуть на эти копеечные потери.

Однако, когда речь идёт о линиях длиной в километры, а то и в сотни километров — вот тогда потери на таких длинах настолько велики, что окупается и установка трансформаторов, и более высокие опоры с более эффективными изоляторами, да и все остальные издержки тоже. Чем длиннее линия, тем меньше ток для неё желателен, и тем выше напряжение для неё нужно.

Для непосредственного питания домов в посёлках и городах используются трансформаторные подстанции на 10/0,4 кВ. К ним подходит напряжение 10 кВ (10 000 В), а выходит на дома 0,4 кВ (400 В). При этом речь идёт о межфазном напряжении. Раньше те же посёлки запитывались через трансформаторы 6/0,38 кВ, но сейчас линии 6 кВ считаются устаревшими. Переход с 6 на 10 кВ позволил по тем же старым кабелям передавать к посёлкам бо́льшую мощность в связи с возрастанием энергонасыщенности домов.

К трансформаторам, питающим конечных потребителей, также подводятся линии с напряжениями 20 и 35 кВ.

Существуют линии на 110, 220, 330, 500 и 750 кВ для связи вышестоящих энергообъектов. Линия на 1150 кВ у нас тоже была, но в настоящий момент работает только на 500 кВ. Потери на коронные разряды при 1150 вольтах оказались слишком большими.

Коронные разряды

В 1970-х годах разрабатывался проект линии напряжением 2200 кВ, но до его реализации дело не дошло. Одна из причин — те же самые коронные разряды, потери через которые увеличиваются с ростом напряжения.

Читайте также:  Реле напряжения рнпп 316

На этом всё. Я очень старался написать понятно. Если у меня более-менее получилось получилось — ставьте лайки! 🙂

Пишите комментарии и подписывайтесь на канал! Удачи!

Источник



Почему передачу электроэнергии на расстояние выполняют на повышенном напряжении

Сегодня передачу электрической энергии на расстояние всегда выполняют на повышенном напряжении, которое измеряется десятками и сотнями киловольт. По всему миру электростанции различного типа генерируют электричество гигаваттами. Это электричество распределяется по городам и селам при помощи проводов, которые мы можем видеть например вдоль трасс и железных дорог, где они неизменно закреплены на высоких опорах с длинными изоляторами. Но почему передача всегда осуществляется на высоком напряжении? Об этом расскажем далее.

Передача электроэнергии на расстояние

Представьте что вам необходимо передать по проводам электрическую мощность хотя бы в 1000 ватт на расстояние 10 километров в форме переменного тока с минимальными потерями, чтобы запитать мощный киловаттный прожектор. Что вы предпримете? Очевидно, что напряжение необходимо будет так или иначе преобразовывать, понижать или повышать при помощи трансформатора.

Допустим, источник (небольшой бензиновый генератор) выдает напряжение 220 вольт, при этом в вашем распоряжении есть двухжильный медный кабель с сечением каждой жилы по 35 кв.мм. На 10 километров такой кабель даст активное сопротивление около 10 Ом.

Схема передачи электроэнергии

Нагрузка мощностью 1 кВт имеет сопротивление около 50 Ом. И что если передаваемое напряжение оставить на уровне 220 вольт? Это значит, что шестая часть напряжения придется (упадет) на передающий провод, который окажется под напряжением около 36 вольт. И вот, порядка 130 Вт потеряно по пути — просто подогрели передающие провода. А на прожекторе получим не 220 вольт, а 183 вольта. КПД передачи оказалось 87%, и это пренебрегая еще индуктивном сопротивлении передающих проводов.

Дело в том, что активные потери в передающих проводах всегда прямо пропорциональны квадрату тока (см. Закон Ома). Следовательно если передачу той же самой мощности осуществить при более высоком напряжении, то падение напряжения на проводах не окажется столь губительным фактором.

Допустим теперь иную ситуацию. У нас имеется тот же самый бензиновый генератор, выдающий 220 вольт, те же 10 километров провода с активным сопротивлением 10 Ом, и тот же самый прожектор на 1кВт, но плюс ко всему еще есть два киловаттных трансформатора, первый — повышающий 220-22000 вольт, расположенный возле генератора и подключенный к нему обмоткой низкого напряжения, а обмоткой высокого напряжения — присоединен к передающим проводам. А второй трансформатор, на расстоянии 10 километров, — понижающий 22000-220 вольт, к обмотке низкого напряжения которого присоединен прожектор, а обмотка высокого напряжения — получает питание от передающих проводов.

Передача электроэнергии с использованием трансформатора

Итак, при мощности нагрузки 1000 ватт при напряжении 22000 вольт, ток в передающем проводе (здесь можно обойтись без учета реактивной составляющей) составит всего 45мА, а значит на нем упадет уже не 36 вольт, (как было без трансформаторов) а всего 0,45 вольт! Потери составят уже не 130 Вт, а всего 20 мВт. КПД такой передачи на повышенном напряжении составит 99,99%. Вот почему передача на повышенном напряжении более эффективна.

В нашем примере ситуация рассмотрена грубо, и использовать дорогие трансформаторы для такой простой бытовой цели было бы конечно нецелесообразным решением. Но в масштабах стран и даже областей, когда речь идет о расстояниях в сотни километров и об огромных передаваемых мощностях, стоимость электроэнергии, которая могла бы потеряться, тысячекратно превышает любые затраты на трансформаторы. Вот почему при передаче электроэнергии на расстояние всегда применяется повышенное напряжение, измеряемое сотнями киловольт — чтобы снизить потери мощности при передаче.

Непрерывный рост электропотребления, концентрация генерирующих мощностей на электростанциях, сокращение свободных от застройки территорий, ужесточение требований по защите окружающей среды, инфляция и рост цен на землю, а также ряд других факторов настоятельно диктуют повышение пропускной способности линий электропередачи.

Конструкции различных линий электропередачи рассмотрены здесь: Устройство различных ЛЭП разного напряжения

Объединение энергетических систем, увеличение мощности электрических станций и систем в целом сопровождаются увеличением расстояний и потоков мощности, передаваемых по линии электропередачи. Без мощных линий электропередачи высокого напряжения невозможна выдача энергии от современных крупных электростанций.

Единая энергетическая система позволяет обеспечить передачу резервной мощности в те районы, где имеется в ней потребность, связанная с ремонтными работами или аварийными условиями, появится возможность передавать избыток мощности с запада на восток или наоборот, обусловленный поясным сдвигом во времени.

Благодаря дальним передачам стало возможным строительство сверхмощных электростанций и полное использование их энергии.

Капиталовложения на передачу 1 кВт мощности на заданное расстояние при напряжении 500 кВ в 3,5 раза ниже, чем при напряжении 220 кВ, и на 30 — 40% ниже, чем при 330 — 400 кВ.

Читайте также:  Что такое импульс напряжения

Стоимость передачи 1 кВт•ч энергии при напряжении 500 кВ вдвое ниже, чем при напряжении 220 кВ, и на 33 — 40% ниже, чем при напряжении 330 или 400 кВ. Технические возможности напряжения 500 кВ (натуральная мощность, расстояние передачи) в 2 — 2,5 раза превышают возможности напряжения 330 кВ и в 1,5 раза — напряжения 400 кВ.

Линия напряжением 220 кВ может передать мощность 200 — 250 МВт на расстояние до 200 — 250 км, линия 330 кВ — мощность 400 — 500 МВт на расстояние до 500 км, линия 400 кВ — мощность 600 — 700 МВт на расстояние до 900 км. Напряжение 500 кВ обеспечивает передачу мощности 750 — 1 000 МВт по одной цепи на расстояние до 1 000 — 1 200 км.

Источник

Передача электроэнергии — распространенные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I 2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередачВоздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализацииОбустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВУльтравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Читайте также:  Номинальное напряжение это входное или выходное

Пример наиболее распространенных конфигураций ЛЭП

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник