Меню

В чем причина возникновения индукционного тока в катушке

Индукционный ток. Определение. Условия возникновения. Величина и направление.

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.

С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.

Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.

Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.

Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.

В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.

И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.

Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.

Источник

От чего зависит индукционный ток?

Введение

Се­го­дняш­ний урок будет по­свя­щен яв­ле­нию элек­тро­маг­нит­ной ин­дук­ции. Яв­ле­ни­ем элек­тро­маг­нит­ной ин­дук­ции на­зы­ва­ет­ся яв­ле­ние воз­ник­но­ве­ния элек­три­че­ско­го тока в про­вод­ни­ке под дей­стви­ем пе­ре­мен­но­го маг­нит­но­го поля.

Важно, что в дан­ном слу­чае про­вод­ник дол­жен быть за­мкнут. В на­ча­ле XIX в. после опы­тов дат­ско­го уче­но­го Эр­сте­да стало ясно, что элек­три­че­ский ток со­зда­ет во­круг себя маг­нит­ное поле. После встал во­прос о том, нель­зя ли по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля, т.е. про­из­ве­сти об­рат­ные дей­ствия. Если элек­три­че­ский ток со­зда­ет маг­нит­ное поле, то, на­вер­ное, и маг­нит­ное поле долж­но со­зда­вать элек­три­че­ский ток. В пер­вой по­ло­вине XIX века уче­ные об­ра­ти­лись имен­но к таким опы­там: стали ис­кать воз­мож­ность со­зда­ния элек­три­че­ско­го тока за счет маг­нит­но­го поля.

Читайте также:  Зарядка аккумулятора низким током автомобильного

Опыты Фарадея

Впер­вые уда­лось до­стичь успех в этом (т.е. по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля) ан­глий­ско­му фи­зи­ку Май­к­лу Фа­ра­дею. Итак, об­ра­тим­ся к опы­там Фа­ра­дея.

Рис. 1. Опыт, ана­ло­гич­ный опыту Фа­ра­дея. При дви­же­нии маг­ни­та в ка­туш­ке, в ее цепи ре­ги­стри­ру­ет­ся элек­три­че­ский ток

Пер­вая схема была до­воль­но про­стой. Во-пер­вых, М. Фа­ра­дей ис­поль­зо­вал в своих опы­тах ка­туш­ку с боль­шим чис­лом вит­ков. Ка­туш­ка на­ко­рот­ко была при­со­еди­не­на к из­ме­ри­тель­но­му при­бо­ру, мил­ли­ам­пер­мет­ру (мА). Нужно ска­зать, что в те вре­ме­на не было до­ста­точ­но хо­ро­ших ин­стру­мен­тов для из­ме­ре­ния элек­три­че­ско­го тока, по­это­му поль­зо­ва­лись необыч­ным тех­ни­че­ским ре­ше­ни­ем: брали маг­нит­ную стрел­ку, рас­по­ла­га­ли рядом с ней про­вод­ник, по ко­то­ро­му про­те­кал ток, и по от­кло­не­нию маг­нит­ной стрел­ки су­ди­ли о про­те­ка­ю­щем токе. Так вот в дан­ном слу­чае токи могли быть очень неве­ли­ки, по­это­му ис­поль­зо­вал­ся при­бор мА, т.е. тот, ко­то­рый из­ме­ря­ет ма­лень­кие токи.

Вдоль ка­туш­ки М. Фа­ра­дей пе­ре­ме­щал по­сто­ян­ный маг­нит – от­но­си­тель­но ка­туш­ки маг­нит дви­гал­ся вверх и вниз.

Об­ра­ща­ем ваше вни­ма­ние на то, что в этом экс­пе­ри­мен­те впер­вые было за­фик­си­ро­ва­но на­ли­чие элек­три­че­ско­го тока в цепи в ре­зуль­та­те из­ме­не­ния маг­нит­но­го по­то­ка, ко­то­рый про­хо­дит сквозь ка­туш­ку.

Фа­ра­дей об­ра­тил вни­ма­ние и на тот факт, что стрел­ка мА от­кло­ня­ет­ся от сво­е­го ну­ле­во­го зна­че­ния, т.е. по­ка­зы­ва­ет, что в цепи су­ще­ству­ет элек­три­че­ский ток толь­ко тогда, когда маг­нит дви­жет­ся. Стоит толь­ко маг­ни­ту оста­но­вить­ся, стрел­ка воз­вра­ща­ет­ся в пер­во­на­чаль­ное по­ло­же­ние, в ну­ле­вое по­ло­же­ние, т.е. ни­ка­ко­го элек­три­че­ско­го тока в цепи в этом слу­чае нет.

Вто­рая за­слу­га Фа­ра­дея – уста­нов­ле­ние за­ви­си­мо­сти на­прав­ле­ния ин­дук­ци­он­но­го элек­три­че­ско­го тока от по­ляр­но­сти маг­ни­та и на­прав­ле­ния его дви­же­ния. Сто­и­ло Фа­ра­дею из­ме­нить по­ляр­ность маг­ни­тов и про­пус­кать маг­нит через ка­туш­ку с боль­шим чис­лом вит­ков, как тут же ме­ня­лось на­прав­ле­ние ин­дук­ци­он­но­го тока, того, ко­то­рый воз­ни­ка­ет в за­мкну­той элек­три­че­ской цепи.

Т.о. мы при­шли к тому, с чего на­чи­на­ли урок: под­твер­ди­лась ги­по­те­за, что элек­три­че­ский ток воз­ни­ка­ет, когда из­ме­ня­ет­ся маг­нит­ное поле.

Итак, неко­то­рое за­клю­че­ние. Из­ме­ня­ю­ще­е­ся маг­нит­ное поле со­зда­ет элек­три­че­ский ток. На­прав­ле­ние элек­три­че­ско­го тока за­ви­сит от того, какой полюс маг­ни­та про­хо­дит в дан­ный мо­мент через ка­туш­ку, в каком на­прав­ле­нии дви­жет­ся маг­нит.

И еще: ока­зы­ва­ет­ся, на зна­че­ние элек­три­че­ско­го тока вли­я­ет ко­ли­че­ство вит­ков в ка­туш­ке. Чем боль­ше вит­ков, тем и зна­че­ние тока будет боль­ше.

Об­ра­тим­ся те­перь ко вто­ро­му экс­пе­ри­мен­ту Фа­ра­дея. В чем он за­клю­чал­ся?

Читайте также:  Решение задач с трехфазным током

Рис. 2. Вто­рой экс­пе­ри­мент по ис­сле­до­ва­нию яв­ле­ния элек­тро­маг­нит­ной ин­дук­ции

Две ка­туш­ки раз­ме­ща­лись близ­ко друг с дру­гом. Одна ка­туш­ка с боль­шим чис­лом вит­ков под­клю­ча­лась к ис­точ­ни­ку тока, в этой цепи был ключ, ко­то­рый за­мы­кал и раз­мы­кал цепь. Вто­рая ка­туш­ка, тоже с боль­шим чис­лом вит­ков, под­клю­чен­ная к мил­ли­ам­пер­мет­ру на­пря­мую, ни­ка­ких ис­точ­ни­ков тока нет. Как толь­ко цепь за­мы­ка­лась, мил­ли­ам­пер­метр по­ка­зы­вал на­ли­чие элек­три­че­ско­го тока в цепи. Как толь­ко цепь раз­мы­ка­лась, мил­ли­ам­пер­метр вновь ре­ги­стри­ро­вал на­ли­чие элек­три­че­ско­го тока, но на­прав­ле­ние элек­три­че­ско­го тока из­ме­ня­лось на про­ти­во­по­лож­ное. Пока цепь была за­мкну­та, т.е. пока в цепи про­те­кал элек­три­че­ский ток, мил­ли­ам­пер­метр ни­ка­ко­го тока в элек­три­че­ской цепи не ре­ги­стри­ро­вал.

Выводы из экспериментов

Какие вы­во­ды были сде­ла­ны М.Фа­ра­де­ем в ре­зуль­та­те этих экс­пе­ри­мен­тов? Ин­дук­ци­он­ный элек­три­че­ский ток по­яв­ля­ет­ся в за­мкну­той цепи толь­ко тогда, когда су­ще­ству­ет пе­ре­мен­ное маг­нит­ное поле. При­чем это маг­нит­ное поле долж­но из­ме­нять­ся.

От чего зависит индукционный ток?

Если из­ме­не­ния маг­нит­но­го поля не про­ис­хо­дит, то не будет ни­ка­ко­го элек­три­че­ско­го тока. Даже если маг­нит­ное поле су­ще­ству­ет. Мы можем ска­зать, что ин­дук­ци­он­ный элек­три­че­ский ток прямо про­пор­ци­о­на­лен, во-пер­вых, числу вит­ков, во-вто­рых, ско­ро­сти маг­нит­но­го поля, с ко­то­рой из­ме­ня­ет­ся это маг­нит­ное поле от­но­си­тель­но вит­ков ка­туш­ки.

Рис. 3. От чего за­ви­сит ве­ли­чи­на ин­дук­ци­он­но­го тока?

Для ха­рак­те­ри­сти­ки маг­нит­но­го поля ис­поль­зу­ет­ся ве­ли­чи­на, ко­то­рая на­зы­ва­ет­ся маг­нит­ный поток. Она ха­рак­те­ри­зу­ет маг­нит­ное поле в целом, мы об этом будем го­во­рить на сле­ду­ю­щем уроке. Сей­час от­ме­тим лишь, что имен­но из­ме­не­ние маг­нит­но­го по­то­ка, т.е. числа линий маг­нит­но­го поля, про­ни­зы­ва­ю­щих кон­тур с током (ка­туш­ку, на­при­мер), при­во­дит к воз­ник­но­ве­нию в этом кон­ту­ре ин­дук­ци­он­но­го тока.

Источник

Причины возникновения индукционного тока

Два способа изменения магнитного потока через контур

Как мы уже знаем, индукционный ток возникает в проводящем замкнутом контуре вследствие изменения магнитного потока, пронизывающего этот контур (§ 5).

Магнитный поток через контур можно изменять двумя способами:

1. Контур (или его часть) перемещать в постоянном магнитном поле.

2. Изменять во времени пронизывающее неподвижный контур магнитное поле.

1. Какие из схематических рисунков (рис. 6.1) иллюстрируют первый способ изменения магнитного потока, а какие — второй? Катушка на рисунке б замкнута.

Рис. 6.1

Можно, конечно, изменять поток магнитной индукции через контур, сочетая оба описанных способа.

Из курса физики 10-го класса вам известно: чтобы в замкнутой цепи существовал электрический ток (в том числе индукционный), необходимо, чтобы на свободные заряды действовали силы неэлектростатического происхождения, которые называют сторонними силами.

Мы сейчас увидим, что природа сторонних сил, вызывающих появление индукционного тока в замкнутом контуре, зависит от того, каким из двух указанных выше способов изменяется магнитный поток через этот контур.

Возникновение индукционного тока при движении проводника

Рассмотрим сначала причину возникновения индукционного тока в случае, когда контур или его части движутся в постоянном магнитном поле.

Читайте также:  При сварки каким током применяются электроды с основным покрытием

Пусть, например, металлический стержень скользит по горизонтальным металлическим рельсам, находящимся в однородном магнитном поле, вектор магнитной индукции которого направлен вертикально вниз (рис. 6.2).

Источник



Электромагнитная индукция.

1831 г. — М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, — появление, возникновение).

Электромагнитная индукция

Индукционный ток в катушке возникает при

перемещении постоянного магнита относительно катушки;

при перемещении электромагнита относительно катушки;

при перемещении сердечника относительно электромагнита, вставленного в катушку;

при регулировании тока в цепи электромагнита;

при замыкании и размыкании цепи

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции).

Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, назы­вается электромагнитной индукцией.

Или: явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией.

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции)

Закон электромагнитной индукции

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление): При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление). e не зависит от свойств контура: Закон электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Закон электромагнитной индукции

Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

Правило Ленца

Возникновение индукционного тока — следствие закона сохранения энергии!

В случае 1: При приближении магнита, увеличении тока, замыкании цепи: ; Магнитный поток Ф ­ → ΔФ>0 .Чтобы компенсировать это изменение (увеличение) внешнего поля, необходимо магнитное поле, направленное в сторону, противоположную внешнему полю: , где — т.н. индукционное магнитное поле.

В случае 2: при удалении магнита, уменьшении тока, размыкании цепи: . Магнитный поток ФΔФ . Чтобы компенсировать это изменение (уменьшение), необходимо магнитное поле, сонаправленное с внешним полем: .

Источником магнитного поля является ток. Поэтому:

Возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им поток магнитной индукции через площадь, ограниченную контуром, стремится компенсиро­вать то изменение потока магнитной индукции, которое вызывает данный ток (правило Ленца).

Ток в контуре имеет отрицательное направление (),еслипротивоположно (т.е. ΔΦ>0). Ток в контуре имеет положительное направление (), если совпа­дает с , (т.е. ΔΦ ).

Поэтому с учетом правила Ленца (знака) выражение для закона электромагнитной индукции записывается: .

Данная формула справедлива для СИ (коэффициент пропорциональности равен 1). В других системах единиц коэффициент другой.

Если контур (например, катушка) состоит из нескольких витков, то Если контур (например, катушка) состоит из нескольких витков,,

где n – количество витков. Все предыдущие формулы справедливы в случае линейного (равномерного) изменения магнитного потока. В произвольном случае закон записывается через производную: , где e – мгновенное значение ЭДС индукции.

Источник