Меню

В каком случае используется магнитное действие тока

Вопросы § 35

Физика А.В. Перышкин

1.Как можно наблюдать на опыте тепловое действие тока?

Тепловое действие тока можно наблюдать на проволоке, через которую пропускают электрический ток, она нагревается, удлиняется от нагревания и провисает. Если ток увеличить, можно нагреть проволоку докрасна. В лампах накаливания вольфрамовая спираль накаляется током до яркого свечения.

2. Как можно наблюдать на опыте химическое действие тока?

Химическое действие тока состоит в выделении веществ из растворов при прохождении через
них электрического тока — явление электролиза используется для получения чистых металлов. На опыте это можно продемонстрировать, пропуская ток через раствор медного купороса, получая на отрицательно заряженном электроде чистую медь.

3. Где используют тепловое и химическое действия тока?

Тепловое действие электрического тока используется в различных нагревательных приборах: плитах, утюгах, лампах накаливания, обогревателях воздуха и воды, полов, грелках и т.п. Химическое действие электрического тока используется в промышленном производстве чистых металлов и других веществ электролизом.

4. На каком опыте можно показать магнитное действие тока?

Магнитное действие электрического тока можно продемонстрировать следующим опытом. На железный гвоздь намотать медную проволоку в изоляции, концы которой подсоединить к источнику тока. Когда ток идет, к гвоздю примагничиваются мелкие железные предметы: скрепки, гвоздики, кнопки, как только цепь разрывается, магнитное действие пропадает, все осыпается.

5. Какое действие тока используют в устройстве гальванометра?

В устройстве гальванометра используют явление взаимодействия катушки с током и магнита.

Источник

Большая Энциклопедия Нефти и Газа

Магнитное действие — ток

Магнитное действие тока широко используют в технике. [1]

Магнитное действие тока используют для измерения силы тока с помощью магнитоэлектрических приборов. [2]

Поэтому магнитное действие тока следует рассматривать как наиболее характерное проявление тока. [3]

Поэтому магнитное действие тока следует рассматривать как наибо — лее — характерное проявление тока. [4]

Поэтому магнитное действие тока следует рассматривать как наиболее характерное проявление тока. [5]

На использовании магнитного действия тока основано устройство многочисленных измерительных приборов. Прибор содержит подвижную магнитную стрелку, помещенную внутрь проволочной катушки. Так же как и в опыте на рис. 105, при протекании тока на стрелку действует момент силы, который, однако, внутри катушки с п витками проволоки приблизительно в 2л раз больше, так как действия обеих частей каждого витка ( над стрелкой и под ней) складываются. [7]

Допуская, что магнитное действие тока имеет магнитный потенциал такого рода, мы попытаемся выразить этот результат математически. [8]

Считая, что магнитное действие тока обладает такого рода магнитным потенциалом, мы приступим к математическому выражению этого результата. [9]

В основе всех расчетов магнитных действий тока и многих других расчетов, связанных с теорией электромагнитного поля, лежит закон, открытый в 1820 г. французскими учеными Био и Саваром. R закону Био поля тока можно вычислить геометрически и СаваРа — нДе суммируя, ( по правилу многоугольника) силы, ный полюс. [10]

Открытие Эрстедом в 1820 г. магнитного действия тока показало, что между магнитными и электрическими явлениями существует связь и что магнитные действия можно получить при помощи электрических токов. [11]

Открытие Эрстедом в 1820 г. магнитного действия тока показало, что между магнитными и электрическими явлениями существует связь и что магнитные действия можно получить при помощи электрических токов. [12]

Вид этого выражения показывает, что магнитное действие токов в диске эквивалентно магнитному действию дорожки изображений магнитной системы, имеющей форму спирали. [13]

После того как Эрстед в 1820 г. открыл магнитное действие тока , Ампер высказал предположение, что магнитные свойства железа обязаны круговым токам, текущим внутри молекул. [14]

Положение дела в корне изменилось, когда было открыто магнитное действие тока ( 1820 г.) и установлена пропорциональность между током и магнитной силой. Понятие электрический ток получило количественную определенность: ток вызывает магнитную силу, пропорциональную его величине. [15]

Источник

Применение магнитов в промышленности и быту

Главная

Содержание:

Сталкиваясь с различными вещами (приспособлениями, техническими средствами, инструментом, фурнитурой), мало кто задумывается, что их преимущества, оригинальность — результат уникальных характеристик материалов. Изделия, в составе которых есть магниты, прочно вошли в нашу жизнь. Статья рассказывает о сфере применения минерала, лайфхаках с его использованием.

Читайте также:  Группы генераторов переменного тока

Магнит — что это

Так называют физическое тело кристаллической структуры с собственным магнитным полем. Материал (магнетит) назван по региону открытия залежей минерала в Малой Азии — Магнисии. В промышленности, быту в чистом виде используется редко. Все, с чем приходится иметь дело — неодимовые магниты, сплавы (железо как связующий элемент, неодим, бор). Отличаются компактностью, устойчивостью к размагничиванию, мощностью сцепления (в разы превосходят ферриты), термостойкостью, десятилетиями не теряют уникальных свойств.

Использование в промышленности

Надежность, сила притяжения, хорошие эксплуатационные качества обусловили применение сплава в различных отраслях. Благодаря уникальным свойствам он более востребован, чем редкоземельный (природный) магнит.

Строительство

  • Использование омагниченной воды для приготовления бетонного раствора уменьшает время кристаллизации, повышает прочность искусственного камня.
  • Сварные конструкции успешно замещаются магнитными фиксаторами. Процесс сборки гораздо удобнее, скорость выполнения технологической операции растет.

Нефтепереработка

Магнитные элементы вдоль трубопровода повышают экологичность производства, позволяют создать технологический цикл замкнутого типа, препятствуют образованию отложений на внутренних стенках.

Транспорт

  • Запорные устройства.
  • Датчики.
  • Преобразователи электромеханические.
  • За счет использования неодимовых магнитов уменьшаются габариты электродвигателей, снижается сила трения, растет КПД.
  • Турбины.

Железоотделители

С помощью неодимовых магнитов выполняется удаление примесей металлов из сыпучих веществ, жидких сред. Нивелируется риск поломок оборудования, загрязнения готовой продукции.

Медицина

  • Приборы для МРТ.
  • Медицинский магнитный инструмент.

Компьютерная техника

Неодимовые магниты нашли широкое применение в этой сфере: динамики гаджетов, записывающие головки, винчестеры, DVD-приводы.

И это далеко не весь перечень отраслей народного хозяйства, где применяется уникальный сплав, в состав которого входит неодим.

Использование магнитных элементов в быту

«Народные умельцы» нашли множество способов решения бытовых проблем с помощью этого замечательного сплава. Предела «полета мысли» русского человек нет —неодимовые магниты пригодятся в каждом доме.

Элементы крепления

  • Держатель проводов (кабелей). Закрепить в удобном месте неодимовый магнит, надеть на провод пружину подходящего диаметра, и готова рациональная конструкция.
  • Держатель метиза, инструмента, кухонных принадлежностей. Чтобы шурупы, гвозди всегда были под рукой, положить в карман куртки (рубашки) неодимовый магнит, и не придется таскать за собой баночку с нужным крепежом.

Неодимовый магнит поможет усовершенствовать бытовой инструмент. Закрепленный скотчем на шуруповерте, резко повышает производительность – не нужно тратить время на поиски шурупов.

Не всегда получается удерживать метиз пальцами. Ограниченное пространство, сложность доступа к основе – причин хватает. Неодимовый магнит выручит в подобных ситуациях. Им несложно зафиксировать крепежную деталь в нужном положении, забить гвоздь без риска попасть молотком по пальцам.

Проблема хранения отверток, пассатижей, гаечных ключей, ножей также решается просто. Порядок в гараже, на балконе, кухне обеспечен.

  • Магнитные держатели дверей. Закрепив на створке пластину («пятак»), не придется беспокоиться, что полотно резко закроет проем при сквозняке. Двери пластиковые, деревянные не выдерживают ударных нагрузок, деформируются, приходят в негодность. На основе неодимовых магнитиков изготавливаются антимоскитные сетки, востребованные для жилых строений, садовых участков.
  • Зажимы из магнитов выполняют функцию мини-тисков. Помещение между двумя образцами скрепляемых деталей за счет силы притяжения достигается быстрое, надежное склеивание фрагментов. Если они сложной конфигурации, реализация иного способа потребует больше времени и усилий.

Восстановление утраченных свойств инструмента

Отвертками приходится пользоваться регулярно. Если магнитное напыление наконечника изначально отсутствует или истерлось, возникают проблемы в работе. Удержать крепеж поможет неодимовая шайба, закрепленная на стержне. Без каких-либо затрат превращает обычную отвертку в магнитный инструмент.

Поиск скрытых металлических конструкций

Неодимовый магнит помогает точно определить местоположение швеллера, трубы, арматуры под облицовкой. Кто занимался ремонтом, сверлением стен, потолка, знает, сколько сверл, буров, коронок приходится менять в процессе работы «вслепую».

Очистка моторного масла

Сливная пробка с неодимовым магнитом в поддоне картера «собирает» металлическую пыль, препятствует ее попаданию в двигатель.

Магнитный инструмент

Незаменимый помощник домашнему мастеру. Продается в большом сортаменте, но если нет под рукой, несложно изготовить самостоятельно.

  • Закрепив фрагмент сплава на кончике рейки, штапика, таким телескопическим магнитным инструментом несложно найти мелкий метиз, закатившийся между половиц, в угол комнаты, собрать металлическую стружку.
  • Сверление. Разновидность востребованного в быту магнитного инструмента – дрель на подставке из сплава. Повышается точность, уменьшается вибрация.
  • Телескопические ручки, захваты с деталями из сплава упрощают работу в стесненных условиях ограниченного пространства, избавляют от необходимости тратить время на поиски потерявшейся металлической фурнитуры, метиза.
Читайте также:  Ток в белковых молекулах

Хороший хозяин придумает, как изготовить и использовать самодельный магнитный инструмент.

Источник



Действия электрического тока

Мы не обладаем возможностью увидеть электроны, бегущие по проводнику. Как же тогда можно обнаружить ток в проводнике? Наличие электрического тока можно обнаружить по косвенным признакам. Так как, ток, протекая по проводнику, оказывает воздействие на него.

Вот некоторые из признаков:

  1. тепловой;
  2. химический;
  3. магнитный.

Тепловое действие тока

Благодаря такому действию тока мы можем освещать помещения с помощью ламп накаливания. А, так же, используем различные нагревательные электроприборы – конвекторы, электроплиты, утюги (рис. 1).

Используя метровый кусок никелиновой проволоки (рис. 2), можно продемонстрировать нагревание проводника при протекании по нему электрического тока. Для заметного провисания нагретой проволоки из-за теплового увеличения длины и наблюдения красноватого ее свечения будет достаточно тока в 2 — 3 Ампера.

Кусок провода нагревается, когда по нему протекает электрический ток. Чем больше ток в проводнике, тем больше он нагреется. Длина нагретого проводника увеличивается.

Подробнее о выделившемся количестве теплоты можно прочитать в статье о законе Джоуля-Ленца (ссылка).

Примечание: Нихром, никелин, константан – сплавы металлов, обладающие большим удельным сопротивлением (ссылка). Проволоки, изготовленные из таких сплавов, используются в различных нагревательных электроприборах.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула \(\large CuSO_<4>\). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

Химическое действие тока применяют в медицине

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Читайте также:  Какая физическая величина характеризует быстроту выполнения работы электрическим током в каких

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Рамка с током и подковообразный магнит

Провод, обладающий достаточной жесткостью, можно изогнуть в виде плоской фигуры – прямоугольника, квадрата, окружности. Эластичные же провода навивают на жесткий каркас, изготовленный из подходящего материала – фанеры, картона, пластмассы и т. д. Такой изогнутый провод образует рамку. Проволочную рамку часто называют контуром.

Проволочная рамка, по которой течет электрический ток, может ориентироваться в магнитном поле.

Чтобы убедиться в этом, проведем такой эксперимент. Используем для него подковообразный магнит и проводник, изогнутый в виде прямоугольной рамки. Подвесим рамку к лапке штатива с помощью нити. Размеры рамки нужно выбрать так, чтобы она поместилась между полюсами магнита.

Сначала используем только подвешенную рамку (рис. 7а), без магнита. Подключим к рамке источник тока. Можно убедиться, что после подключения тока рамка продолжает висеть неподвижно. Отключим источник тока.

Теперь поместим магнит так, чтобы рамка находилась между его полюсами (рис. 7б) и, пропустим по цепи электрический ток. Легко заметить, что во время протекания тока рамка поворачивается и ориентируется по магнитному полю. А когда цепь размыкается, рамка возвращается в первоначальное положение.

Примечание: Если изменить полярность подключения источника к рамке, то она будет поворачиваться в противоположную сторону.

Замечательное свойство рамки с током поворачиваться в магнитном поле, используют в различных измерительных приборах. Один из таких приборов – гальванометр.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Источник