Меню

В каком техническом устройстве используется явление возникновения тока при

Укажите устройство, в котором используется явление возникновения силы, действующей на проводник в магнитном поле, при прохождении через проводник элктрического тока?

Физика | 10 — 11 классы

Укажите устройство, в котором используется явление возникновения силы, действующей на проводник в магнитном поле, при прохождении через проводник элктрического тока.

1)реостат 2)металлоискатель 3)электродвигатель 4)электрочайник.

3) Электродвигатель (рамка в магнитном поле) = = = = = = = = = = = = = = = = = = =.

Устройства : Б)Электрометр, В)Электродвигатель Физические явления : 1)взаимодействие постоянных магнитов 2)возникновение электрического тока под действием переменгого магнитного поля 3)электризация те?

Устройства : Б)Электрометр, В)Электродвигатель Физические явления : 1)взаимодействие постоянных магнитов 2)возникновение электрического тока под действием переменгого магнитного поля 3)электризация тел при ударе 4)взаимодействие наэлектризованных тел 5)действие магнитного поля на проводник с током Напишите.

Букву и цифру ответа плиз.

Укажите устройство в котором используется явление возникновения силы действующей на проводник в магнитном поле при прохождении через проводник элктричесого тока?

Укажите устройство в котором используется явление возникновения силы действующей на проводник в магнитном поле при прохождении через проводник элктричесого тока.

Прямолинейный проводник с током помещен в магнитное поле?

Прямолинейный проводник с током помещен в магнитное поле.

Длина проводника 2м, сила тока в проводнике 3А, индукция магнитного поля 20мТл, угол между направлениями вектора индукции магнитногополя и тока равен 30градусов.

Определите силу, которой магнитное поле действует на проводник.

Установите соответствие между физическими явлениями и техническими устройствами, в которых эти явления используются?

Установите соответствие между физическими явлениями и техническими устройствами, в которых эти явления используются.

ФИЗИЧЕСКОЕ ЯВЛЕНИЕ ТЕХНИЧЕСКОЕ УСТРОЙСТВО

А) взаимодействие магнитной стрелки и 1) электродвигатель

постоянных магнитов 2)компас

Б) действие магнитного поля на 3) Звонок

проводник с током 4)радиоприемник

В) взаимодействие электромагнита 5) магнитный сепаратор

с железными опилками.

Установите соответствие между физическими явлениями и техническими устройствами, в которых эти явления используются?

Установите соответствие между физическими явлениями и техническими устройствами, в которых эти явления используются.

ФИЗИЧЕСКОЕ ЯВЛЕНИЕ ТЕХНИЧЕСКОЕ УСТРОЙСТВО

А) взаимодействие магнитной стрелки и 1) электродвигатель

постоянных магнитов 2) компас

Б) действие магнитного поля на 3) Звонок

проводник с током 4)радиоприемник

В) взаимодействие электромагнита 5) магнитный сепаратор

с железными опилками.

Определите индукцию магнитного поля, в котором на проводник длиной 10см действует сила 0, 05Н?

Определите индукцию магнитного поля, в котором на проводник длиной 10см действует сила 0, 05Н.

Сила тока в проводнике 25 А.

Проводник расположен перпендикулярно индукции магнитного поля.

Изображен прямой проводник с током магнитная стрелка под ним в магнитном поле проводника?

Изображен прямой проводник с током магнитная стрелка под ним в магнитном поле проводника.

Укажите направление магнитной силы этого поля.

Какова индукция магнитного поля в котором проводник длиной 2м действует сила 0, 4 H?

Какова индукция магнитного поля в котором проводник длиной 2м действует сила 0, 4 H?

Сила тока в проводнике 10A.

Проводник расположен перпендикулярно индукции магнитного поля.

Длина проводника 45 см?

Длина проводника 45 см.

Сила тока в проводнике 20 А.

Определите индукцию магнитного поля, в котором находится проводник с током, если сила, которая действует на проводник, равна 9 мН?

Длина проводника 45 см?

Длина проводника 45 см.

Сила тока в проводнике 20 А.

Определите индукцию магнитного поля, в котором находится проводник с током, если сила, которая действует на проводник, равна 9 мН?

На этой странице вы найдете ответ на вопрос Укажите устройство, в котором используется явление возникновения силы, действующей на проводник в магнитном поле, при прохождении через проводник элктрического тока?. Вопрос соответствует категории Физика и уровню подготовки учащихся 10 — 11 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно ознакомиться с вариантами ответов других посетителей страницы или обсудить с ними интересующую тему. Здесь также можно воспользоваться «умным поиском», который покажет аналогичные вопросы в этой категории. Если ни один из предложенных ответов не подходит, попробуйте самостоятельно сформулировать вопрос иначе, нажав кнопку вверху страницы.

Чтобы не было скольжения зимой по льду так безопасней.

Чтобы не было пробуксовки цепи уменьшают шанс скольжения автомобиля.

Когда рыба плывёт в косяке, её выносливость увеличивается раз в шесть. Встречная вода действует на отдельных рыбок так, что движение каждой из них может быть облегчено или затруднено в зависимости от положения по отношению к стайке. Этим и объясняе..

T = 10 c v = v₀ + at ; a = 0, 2 м / с² v = 10 + 0, 2·10 = 12 м / с. V₀ = 36 км / ч = 10 м / с ___________ v — .

Надеюсь что все понятно.

Все должно быть правильно, а если нет, то просто скинь само задание / фото /.

7. 45 так как азон есть тарп.

7, 45 так как азон есть таи.

1)A = 50 * 10 = 500Дж — сила тяжести 2)F = 50 — 20 = 30H A = F * S A = 30 * 10 = 300Дж N = A / t N = 300 / 20 = 15Вт.

Источник

В каком техническом устройстве используется явление возникновения тока при

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

1) действие магнитного поля на движущуюся заряженную частицу

2) действие магнитного поля на проводник с током

3) взаимодействие постоянных магнитов

А) Магнитная стрелка компаса направляется вдоль магнитных линий поля Земли. Это происходит благодаря эффекту взаимодействия постоянных магнитов.

Б) Электродвигатель постоянного тока вращается благодаря эффекту действия магнитного поля на проводник с током (обмотки электродвигателя).

Строительство египетских пирамид

Пирамида Хеопса является одним из семи чудес света. До сих пор остаётся много вопросов, как именно была построена пирамида. Транспортировать, поднять и установить камни, масса которых составляла десятки и сотни тонн, было делом нелёгким.

Для того чтобы поднять каменные глыбы наверх, придумали очень хитрый способ. Вокруг места строительства воздвигали насыпные земляные пандусы. По мере того, как росла пирамида, пандусы поднимались всё выше и выше, как бы опоясывая всю будущую постройку. По пандусу камни тащили на салазках таким же образом, как и по земле, помогая себе при этом рычагами. Угол наклона пандуса был очень незначительным — 5 или 6 градусов, из-за этого длина пандуса вырастала до сотен метров. Так, при строительстве пирамиды Хефрена пандус, соединявший верхний храм с нижним, при разнице уровней, составлявшей более 45 м, имел длину 494 м, а ширину 4,5 м.

В 2007 году французский архитектор Жан-Пьер Уден высказал предположение, что при строительстве пирамиды Хеопса древнеегипетские инженеры использовали систему как внешних, так и внутренних пандусов и тоннелей. Уден полагает, что с помощью внешних пандусов возводилась только нижняя, 43-метровая часть (общая высота пирамиды Хеопса составляет 146 метров). Для подъёма и установки остальных глыб использовалась система внутренних пандусов, расположенных спиралеобразно. Для этого египтяне разбирали внешние пандусы и переносили их внутрь. Архитектор уверен, что обнаруженные в 1986 году полости и толще пирамиды Хеопса — что туннели, в которые постепенно превращались пандусы.

Читайте также:  Электробезопасность виды действия электрического тока

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • Вариант 1
  • Вариант 1. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 2
  • Вариант 2. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 3
  • Вариант 3. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 4
  • Вариант 4. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 5
  • Вариант 5. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 6
  • Вариант 6. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 7
  • Вариант 7. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 8
  • Вариант 8. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 9
  • Вариант 9. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 10
  • Вариант 10. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 11
  • Вариант 11. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 12
  • Вариант 12. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 13
  • Вариант 13. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 14
  • Вариант 14. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 15
  • Вариант 15. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 16
  • Вариант 16. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 17
  • Вариант 17. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 18
  • Вариант 18. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 19
  • Вариант 19. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 20
  • Вариант 20. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 21
  • Вариант 21. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 22
  • Вариант 22. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 23
  • Вариант 23. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 24
  • Вариант 24. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 25
  • Вариант 25. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 26
  • Вариант 26. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 27
  • Вариант 27. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 28
  • Вариант 28. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 29
  • Вариант 29. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 30
  • Вариант 30. Задания ОГЭ 2020. Физика. Е.Е. Камзеева. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
Читайте также:  Сильные токи измерение сильных токов

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

В каком техническом устройстве используется явление возникновения индукционного тока?

1) Электромагнит в подъемном кране
2) Электродвигатель
3) Электрогенератор
4) Амперметр

Другие вопросы из категории

полюсом оказался южный полюс? Объясните почему.

2. К полюсам двух совершенно одинаковых магнитов притянулось по гвоздю. Однако если привести оба полюса в соприкосновение, гвозди сразу же отпадут. Почему?

3. Почему магнитные стрелки, расположенные далеко друг от друга, ориентируются в одном направлении, а расположенные поблизости друг от друга — в другом направлении?

(усі величини вимірюються в СІ.

Читайте также

1) Электромагнит в подъемном кране
2) Электродвигатель
3) Электрогенератор
4) Амперметр

А первый;
Б второй;
В третий.

2)На рисунке изображена модель…лития .

А атома;
Б иона;
В ядра.

3)Исследуя зависимость силы тока от напряжения на концах резистора, ученик получил изображенный на рисунке график. По этому графику он рассчитал значение сопротивления резистора, которое оказалось равным…

А 0,5 Ом;
Б 1 Ом;
В 1,5 Ом;
Г 2 Ом.

4)Какие из перечисленных ниже явлений служат примером магнитного действия тока?

А Накаливание спирали в электрических лампах под действием тока.
Б Взаимное притяжение проводников с током.
В Получение при помощи электрического тока из руд алюминия, меди.

5)Какое из устройств используют для плавного регулирования силы тока?

А ключ;
Б предохранитель;
В реостат.

характеризующее действие магнитного поля на движущийся заряд.

Б. Явление возникновения в замкнутом контуре электри­ческого тока при изменении магнитного потока.

B. Явление, характеризующее действие магнитного поля на проводник с током.

2. Индукционный ток возникает в любом замкнутом прово­дящем контуре, если. Выберите правильное утвержде­ние.

A. . контур находится в однородном магнитном поле.

Б. . контур движется поступательно в однородном маг­нитном поле.

B. . изменяется магнитный поток, пронизывающий кон­тур.

3. Катушка замкнута на гальванометр. При каких опытах воз­можно отклонение стрелки прибора? Приведите примеры.

4. Проволочная рамка находится в однородном магнитном поле. В каких случаях в ней может возникнуть индукци­онный ток?

5. Кольцо из проволоки, приведенное в быстрое вращение между полюсами электромагнита, заметно нагревается. Объясните это явление. Будет ли нагреваться при тех же условиях кольцо, имеющее разрез?

Источник



Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

Читайте также:  Реле тока pmt 101

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник