Меню

В таблице показано как изменялся ток в катушке идеального колебательного контура чему равна

Контрольная работа по физике Электромагнитные колебания и волны 11 класс

Контрольная работа по физике Электромагнитные колебания и волны для учащихся 11 класса с ответами. Контрольная работа включает 5 вариантов, в каждом варианте по 8 заданий.

1 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ) величина, стоящая под знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите частоту колебаний тока.

Контрольная работа по физике Электромагнитные колебания и волны 1 вариант задание А2

1) 8 Гц
2) 0,125 Гц
3) 6 Гц
4) 4 Гц

А3. Как изменится период собственных электромагнитных колебаний в контуре, если ключ К перевести из положения 1 в положение 2?

Контрольная работа по физике Электромагнитные колебания и волны 1 вариант задание А3

1) Уменьшится в 2 раза
2) Увеличится в 2 раза
3) Уменьшится в 4 раза
4) Увеличится в 4 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке уменьшили в 2 раза, а его сопротивление уменьшили в 4 раза. При этом мощность тока

1) уменьшится в 4 раза
2) уменьшится в 8 раз
3) не изменится
4) увеличится в 2 раза

А5. Сила тока в первичной обмотке трансформатора 0,5 А, напряжение на её концах 220 В. Сила тока во вторичной обмотке 11 А, напряжение на её концах 9,5 В. Опреде­лите КПД трансформатора.

1) 105 %
2) 95 %
3) 85 %
4) 80 %

В1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 1 2 3 4 5 6 7 8 9
q, 10 -6 Кл 2 1,42 -1,42 -2 -1,42 1,42 2 1,42

Вычислите ёмкость конденсатора в контуре, если индук­тивность катушки равна 32 мГн. Ответ выразите в пико­фарадах и округлите до десятых.

В2. Колебательный контур радиопередатчика содержит кон­денсатор ёмкостью 0,1 нФ и катушку индуктивностью 1 мкГн. На какой длине волны работает радиопередат­чик? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с. Ответ округлите до целых.

C1. Определите период электромагнитных колебаний в коле­бательном контуре, если амплитуда силы тока равна Im, а амплитуда электрического заряда на пластинах кон­денсатора qm.

2 вариант

A1. В уравнении гармонического колебания i = Imcos(ωt + φ) величина ω называется

1) фазой
2) начальной фазой
3) амплитудой силы тока
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите ампли­туду колебаний тока.

Контрольная работа по физике Электромагнитные колебания и волны 2 вариант задание А2

1) 0,4 А
2) 0,2 А
3) 0,25 А
4) 4 А

А3. Как изменится частота собственных электромагнитных колебаний в кон­туре, если ключ К перевести из положения 1 в положение 2?

Контрольная работа по физике Электромагнитные колебания и волны 2 вариант задание А3

1) Уменьшится в 4 раза
2) Увеличится в 4 раза
3) Уменьшится в 2 раза
4) Увеличится в 2 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке увеличили в 2 раза, а сопротивление участка уменьшили в 4 раза. При этом мощность тока

1) не изменилась
2) возросла в 16 раз
3) возросла в 4 раза
4) уменьшилась в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 110 В, сила тока в ней 0,1 А. Напряжение на кон­цах вторичной обмотки 220 В, сила тока в ней 0,04 А. Чему равен КПД трансформатора?

1) 120 %
2) 93 %
3) 80 %
4) 67 %

B1. Напряжение на конденсаторе в цепи переменного тока меняется с циклической частотой ω = 4000 с -1 . Амплиту­да колебаний напряжения и силы тока равны соответст­венно Um = 200 В и Im = 4 А. Найдите ёмкость конденса­тора.

В2. Найдите минимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В процессе колебаний в идеальном колебательном конту­ре в момент времени t заряд конденсатора q = 4 · 10 -9 Кл, а сила электрического тока в катушке равна I = 3 мА. Период колебаний Т = 6,28 · 10 -6 с. Найдите амплитуду колебаний заряда.

3 вариант

А1. В уравнении гармонического колебания u = Umsin(ωt + φ) величина φ называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 3 вариант задание А2

Амплитуда колебаний тока равна

1) 20 А
2) 10 А
3) 0,25 А
4) 4 А

А3. В наборе радиодеталей для изготовления простого коле­бательного контура имеются две катушки с индуктивно­стями L1 = 1 мкГн и L2 = 2 мкГн, а также два конденса­тора, ёмкости которых С1 = 3 пФ и С2 = 4 пФ. При каком выборе двух элементов из этого набора частота собственных колебаний контура будет наибольшей?

А4. По участку цепи сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. Как изме­нится мощность переменного тока на этом участке цепи, если действующее значение напряжения на нём умень­шить в 2 раза, а его сопротивление в 4 раза увеличить?

1) Уменьшится в 16 раз
2) Уменьшится в 4 раза
3) Увеличится в 4 раза
4) Увеличится в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 127 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 12,7 В, сила тока в ней 8 А. Чему равен КПД трансформатора?

1) 100 %
2) 90 %
3) 80 %
4) 70 %

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 2 4 6 8 10 12 14 16 18
q, 10 -6 Кл 2,13 3 2,13 -2,13 -3 -2,13 2,13

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 100 пФ. Ответ выразите в миллигенри и округлите до целых.

В2. Найдите максимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы тока в катушке индуктивности равна 10 мА, а амплитуда колебаний заряда конденсатора равна 5 нКл. В момент времени t заряд конденсатора равен 3 нКл. Найдите силу тока в катушке в этот момент.

4 вариант

A1. В уравнении гармонического колебания u = Umsin(ωt + φ) величина Um называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 4 вариант задание А2

Частота колебаний тока равна

1) 0,12 Гц
2) 0,25 Гц
3) 0,5 Гц
4) 4 Гц

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колеба­ниях. Катушку в этом контуре заменили на другую ка­тушку, индуктивность которой в 4 раза меньше. Каким будет период колебаний контура?

Читайте также:  Цифровой измеритель сопротивление тока

Контрольная работа по физике Электромагнитные колебания и волны 4 вариант задание А3

1) 1 мкс
2) 2 мкс
3) 4 мкс
4) 8 мкс

А4. По участку цепи с некоторым сопротивлением R течёт переменный ток, меняющийся по гармоническому зако­ну. Как изменится мощность переменного тока на этом участке цепи, если действующее значение силы тока на нём увеличить в 2 раза, а его сопротивление в 2 раза уменьшить?

1) Не изменится
2) Увеличится в 2 раза
3) Уменьшится в 2 раза
4) Увеличится в 4 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 220 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 22 В. Какой была бы сила тока во вторичной обмотке при коэффициенте полезного дейст­вия трансформатора 100 %?

1) 0,1 А
2) 1 А
3) 10 А
4) 100 А

B1. Индуктивность катушки равна 0,125 Гн. Уравнение ко­лебаний силы тока в ней имеет вид: i = 0,4cos(2 · 10 3 t), где все величины выражены в СИ. Определите амплиту­ду напряжения на катушке.

В2. Колебательный контур радиоприёмника содержит кон­денсатор, ёмкость которого 10 нФ. Какой должна быть индуктивность контура, чтобы обеспечить приём волны длиной 300 м? Скорость распространения электромаг­нитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре в катушке индук­тивности амплитуда колебаний силы тока Im = 5 мА, а амплитуда колебаний заряда конденсатора qm = 2,5 нКл. В момент времени t сила тока в катушке i = 3 мА. Най­дите заряд конденсатора в этот момент.

5 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ) величина, стоящая перед знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 5 вариант задание А2

Период колебаний тока равен

1) 2 мс
2) 4 мс
3) 6 мс
4) 10 мс

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колебаниях.

Контрольная работа по физике Электромагнитные колебания и волны 5 вариант задание А3

Если ёмкость конденсатора увеличить в 4 раза, то период собственных колебаний контура станет равным

1) 2 мкс
2) 4 мкс
3) 8 мкс
4) 16 мкс

А4. По участку цепи с некоторым сопротивлением R течёт пе­ременный ток, меняющийся по гармоническому закону. В некоторый момент времени действующее значение силы тока на участке цепи увеличивается в 2 раза, а сопротив­ление уменьшается в 4 раза. При этом мощность тока

1) увеличится в 4 раза
2) увеличится в 2 раза
3) уменьшится в 2 раза
4) не изменится

А5. КПД трансформатора 90 %. Напряжение на концах пер­вичной обмотки 220 В, на концах вторичной 22 В. Сила тока во вторичной обмотке 9 А. Какова сила тока в пер­вичной обмотке трансформатора?

1) 0,1 А
2) 0,45 А
3) 0,9 А
4) 1 А

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 1 2 3 4 5 6 7 8 9
q, 10 -6 Кл 2 1,42 -1,42 -2 -1,42 1,42 2 1,42

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 50 пФ. Ответ выразите в мил­лигенри и округлите до целых.

В2. Электрический колебательный контур радиоприёмника содержит катушку индуктивности 10 мГн и два парал­лельно соединенных конденсатора, ёмкости которых равны 360 пФ и 40 пФ. На какую длину волны настроен контур? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы электрического тока в катушке индуктивности Im = 5 мА, а амплитуда напряжения на конденсаторе Um = 2 В. В момент времени t сила тока в катушке i = 3 мА. Найдите напряжение на конденсаторе в этот момент.

Ответы на контрольную работу по физике Электромагнитные колебания и волны 11 класс
1 вариант
1-1
2-2
3-1
4-3
5-2
6. 50,7 пФ
7. 18,84 м
8. T = 2πqm/Im
2 вариант
1-4
2-2
3-3
4-2
5-3
6. 5 мкФ
7. 206,4 м
8. 5 нКл
3 вариант
1-2
2-2
3-3
4-1
5-3
6. 65 мГн
7. 619,1 м
8. 8 мА
4 вариант
1-3
2-2
3-2
4-2
5-3
6. 100 В
7. 2,54 мкГн
8. 2 нКл
5 вариант
1-3
2-2
3-3
4-4
5-4
6. 32 мГн
7. 3768 м
8. 1,6 В

Источник

Решение задач по теме «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ

Презентация к уроку

Назад Вперёд

Цели урока:

  • Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
  • Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
  • Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.

Тип урока:систематизация и обобщение знаний.

Техническая поддержка урока:

  • Демонстрации:
  • Плакаты.
  • Показ слайдов с помощью информационно – компьютерных технологий.
  • Дидактический материал:
  • Опорные конспекты с подробными записями на столах.
  • Оформление доски:
  • Плакат с кратким содержанием опорных конспектов (ОК);
  • Плакат – рисунок с изображением колебательного контура;
  • Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.

План урока:

1. Этап повторения пройденного материала. Проверка домашнего задания.
Четыре группы задач по теме:

  • Электромагнитные колебания.
  • Колебательный контур.
  • Свободные колебания. Свободные колебания – затухающие колебания
  • Характеристика колебаний.

2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.

Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»

К доске вызываются 3 ученика для проверки домашнего задания.

– Задания по этой теме можно разделить на четыре группы.

Четыре группы задач по теме:

1. Задачи с использованием общих законов гармонических колебаний.
2. Задачи о свободных колебаниях конкретных колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.

– Мы остановимся на решении задач 1 и 2 групп.

Урок начнем с повторения необходимых понятий для данной группы задач.

Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.

Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.

Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.

Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 10 8 (м/с)

Основные характеристики колебаний

Амплитуда (силы тока, заряда, напряжения) – максимальное значение (силы тока, заряда, напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда, напряжения) – i, q, u

Схема колебательного контура

Учитель: Что представляют электромагнитные колебания в контуре?

Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.

Задача №1 (д/з)

Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?

Читайте также:  Межузловое напряжение в цепи постоянного тока

Задача № 2 (д/з)

Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.

Задача № 3 (д/з)

Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.

Схема электромагнитных колебаний

Ученик 1 наглядно описывает процессы в колебательном контуре.

Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.

Уравнения, описывающие колебательные процессы в контуре:

Обращаем внимание, что колебания силы тока в цепи опережают колебания напряжения между обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы тока по гармоническому закону, необходимо учитывать связь между функциями синуса и косинуса.

Задача № 1.

По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 2.

По графику зависимости силы тока от времени в колебательном контуре определите:

а) Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?
б) Сколько раз энергия конденсатора достигает максимального значения в течение первых 6 мкс после начала отсчета?
в) Определите по графику амплитудное значение силы тока, период, циклическую частоту, линейную частоту и напишите уравнение зависимости силы тока от времени.

Задача № 3 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 4 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.

К доске вызываются 2 ученика

Задача № 5, 6

Задача № 7

Заряд на обкладках конденсатора колебательного контура изменяется по закону
q = 3·10 –7 cos800πt. Индуктивность контура 2Гн. Пренебрегая активным сопротивлением, найдите электроемкость конденсатора и максимальное значение энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Задача № 8

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.

t, 10 –6 (C) 1 2 3 4 5 6 7 8 9
q, 10 –9 (Кл) 2 1,5 –1,5 –2 –1,5 1,5 2 1,5

1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.

2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.

Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.

Источник

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялась сила тока в контуре с течением времени. t, мкс123456789 l, A0,02,23,00,0-2,2-3,0-

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялась сила тока в контуре с течением времени.

t, мкс 1 2 3 4 5 6 7 8 9
l, A 0,0 2,2 3,0 0,0 -2,2 -3,0 -2,2 0,0 2,2

Выберите два верных утверждения о процессе, происходящем в контуре.

1. В момент t = 1 мкс напряжение на конденсаторе минимально.

2. Период колебаний энергии магнитного поля катушки равен t = 4 мкс.

3. Частота электромагнитных колебаний равна 25 кГц.

4. В момент t = 2 мкс заряд конденсатора максимален

5. В момент t = 6 мкс энергия магнитного поля катушки максимальна.

Проверим все утверждения:

1) В момент минимальной силы тока, согласно закону Ома, напряжение максимально.

2) Как видно из таблицы, ток совершает полное колебание и возвращается к начальному значению каждые 4 секунды.

3) Частота — величина, обратная периоду. v=1/4*10 -6 =250 КГц

4) Заряд конденсатора прямо пропорционален напряжению на конденсаторе, а значит, будет максимален в момент, когда максимально напряжение.

5) Энергия магнитного поля катушки находится в прямой квадратичной зависимости от силы тока, а значит, максимальна, когда максимален модуль силы тока.

Источник

Контрольная работа по переменному току

Контрольная работа по переменному току 11 класс.

Задача В3 вариант 62 2004г.

1. В таблице показано, как менялся ток в катушке колебательного контура. Вычислите по этим данным энергию конденсатора в момент времени 5*10 с, если индуктивность катушки 4мГн. Ответ выразите в наноджоулях, округлив до целых.

2. Участок цепи переменного тока состоит из резистора сопротивлением 10 Ом и катушки индуктивности. Вольтметр, подключенный параллельно к катушке, показал напряжение 4 В, а амперметр, включенный в цепь последовательно, показал силу тока 2 А. Найти максимальное напряжение на концах этого участка цепи.

Задача В3 вариант 63 2004 год.

1. В таблице показано, как менялся ток в катушке колебательного контура. Вычислите по этим данным, при какой емкости конденсатора в контуре, подключенном к источнику переменного тока, наступит резонанс, если индуктивность катушки равна 4 мГн. Ответ выразите в пикофарадах, округлив до целых.

2. В электрическом колебательном контуре емкость конденсатора 2 мкФ, а максимальное напряжение на нем 5 В. В момент времени, когда напряжение на конденсаторе равно 3 В, энергия магнитного поля катушки равна…

Задача В3 вариант 224 2004 год.

1. В цепь переменного тока последовательно включены активное сопротивление и конденсатор емкостью 300 мкФ. Амплитуда напряжения на конденсаторе 100 В, амплитуда напряжения на активном сопротивлении 90 В. Найдите величину активного сопротивления, если циклическая частота 300 Гц. Ответ округлите до целых.

Задача из централизованного тестирования Ф-П.

2. Если отношение максимальной величины заряда на обкладках конденсатора к величине амплитуды силы тока в колебательном контуре равно 6*10 с, омическим сопротивлением контура можно пренебречь, то резонансная частота контура равна…

Задача С5 вариант 132 2003 год.

1. В лабораторной работе исследуются две колебательные системы – пружинный маятник и колебательный контур, в ходе работы было установлено, что период колебаний потенциальной энергии пружинного маятника вдвое меньше периода колебаний энергии магнитного поля катушки индуктивности в колебательном контуре. Определите по этим данным отношение частоты колебаний смещения груза пружинного маятника к частоте колебаний заряда на обкладках конденсатора в колебательном контуре.

Читайте также:  Электрический ток виды источника тока

Задача В3 вариант 251 2004 год.

2. В цепь переменного тока включено активное сопротивление 10 Ом и индуктивность, амплитуда напряжения на индуктивности 100 В, амплитуда напряжения на активном сопротивлении 90 В. Найдите индуктивность, если циклическая частота тока 300 Гц. Ответ выразите в миллигенри и округлите до целых.

Источник



В таблице показано как изменялся ток в катушке идеального колебательного контура чему равна

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 26. В таблице показано, как менялся ток в катушке идеального колебательного контура при свободных электромагнитных колебаниях в этом контуре.

Вычислите по этим данным энергию катушки в момент времени с, если ёмкость конденсатора равна 405 пФ. Ответ округлите до целых.

Энергию катушки можно вычислить по формуле:

Найдем индуктивность L из формулы Томпсона:

И энергия катушки, равна:

Из данных таблицы видно, что период колебаний с, а ток в момент времени с равен А. Подставляем числовые данные в формулу, получаем:

что составляет 16 нДж.

Ответ: 16.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 5
  • Вариант 5. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9 (совпадает с ЕГЭ 2019 вариант 1)
  • Вариант 1. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 10 (совпадает с ЕГЭ 2019 вариант 2)
  • Вариант 2. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 11 (совпадает с ЕГЭ 2019 вариант 3)
  • Вариант 3. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 12 (совпадает с ЕГЭ 2019 вариант 4)
  • Вариант 4. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 13 (совпадает с ЕГЭ 2019 вариант 5)
  • Вариант 5. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 14 (совпадает с ЕГЭ 2019 вариант 6)
  • Вариант 6. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 15 (совпадает с ЕГЭ 2019 вариант 7)
  • Вариант 7. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 16 (совпадает с ЕГЭ 2019 вариант 8)
  • Вариант 8. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 17 (совпадает с ЕГЭ 2019 вариант 9)
  • Вариант 9. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 18 (совпадает с ЕГЭ 2019 вариант 10)
  • Вариант 10. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 19 (совпадает с ЕГЭ 2018 вариант 1)
  • Вариант 1. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 20 (совпадает с ЕГЭ 2018 вариант 2)
  • Вариант 2. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 21 (совпадает с ЕГЭ 2018 вариант 3)
  • Вариант 3. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 22 (совпадает с ЕГЭ 2018 вариант 4)
  • Вариант 4. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 23 (совпадает с ЕГЭ 2018 вариант 5)
  • Вариант 5. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 24 (совпадает с ЕГЭ 2018 вариант 6)
  • Вариант 6. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 25 (совпадает с ЕГЭ 2018 вариант 7)
  • Вариант 7. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 26 (совпадает с ЕГЭ 2018 вариант 8)
  • Вариант 8. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 27 (совпадает с ЕГЭ 2018 вариант 9)
  • Вариант 9. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 28 (совпадает с ЕГЭ 2018 вариант 10)
  • Вариант 10. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 29 (совпадает с ЕГЭ 2017 вариант 11)
  • Вариант 11. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 30 (совпадает с ЕГЭ 2017 вариант 12)
  • Вариант 12. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Электротехника © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.