Меню

В трехфазной симметричной эц соединенной треугольником больше ток

Линейные и фазные токи, схема звезда и треугольник — отличия

Линейные и фазные токи 1

Трехфазной системой переменного электрического тока называют связную совокупность 3-х цепей, в которых имеются синусоидальные ЭДС равной частоты, сдвинутые на одну треть периода по фазе (или 120 градусов), и сформированные одним источником энергии.

В качестве источника, обычно выступает генераторная установка. Практически абсолютное большинство генераторных установок, установленных на современных электростанциях, являются источниками 3-х-фазного тока.

Отдельную цепь данной системы именуют фазой, а систему 3-х сдвинутых по фазе электрических токов принято называть трехфазным.

Так, токи, протекающие в каждой фазе, именуют фазными и условно обозначают IА, IB, IC либо условно Iф. Токи в ветвях нагрузки именуют линейными. Их величина обуславливается величиной фазных напряжений, типом нагрузки. При сугубо активной нагрузке токи идентичны с напряжениями по фазе, а при индуктивной либо емкостной нагрузке, токи могут опережать или отставать от напряжения.

В традиционных электросетях имеет место 2 метода соединения:

Линейные и фазные токи 2

При соединении ветвей схемы треугольником конец одной обмотки подключается к началу другой, т.е. получается замкнутый контур. Для каждого узла схемы выполняется баланс – сумма входящих токов равна сумме исходящих. При таком подключении и симметричной нагрузке выполняется соотношение:

При соединении ветвей элементов схемы звездой все окончания обмоток фаз подключают в один узел 0. Ввиду того, что фазы генератора соединяются последовательно с фазами электроприемников (нагрузки), то линейные токи по величине равны фазным:

Как видим, при соединении фаз, используя метод треугольника, токи разнятся между собой в в 1,72 раза, а при подключении звездой остаются одинаковыми. При этом следует помнить, что соединении фаз генератора может быть выполнено звездой, а приемников – треугольником, и, следовательно, имеет место обратная зависимость. Вследствие чего, в зависимости от требующегося значения напряжения используется та либо иная схема подключения фаз генератора, нагрузки.

Источник

Соединение потребителей электрической энергии в треугольник

При соединении фаз электроприемников в треугольник каждая фаза будет подключена к двум линейным проводам, как показано на рисунке ниже:

sxema-soedineniya-faz-priemnikov-v-treugolnik

Поэтому при таком типе соединения, обратно звезде, независимо от характера и значения сопротивления приемника каждое фазное напряжение будет равно линейному, то есть UФ = UЛ. Если не брать во внимание сопротивления фазных проводов, то можно предположить, что напряжения источника и приемника электрической энергии равны.

На основании приведенной выше схемы и формулы можно сделать вывод, что соединение фаз приемников электрической энергии в треугольник следует применять тогда, когда каждая фаза трехфазного или двухфазного потребителя электрической энергии рассчитана на линейное напряжение сети.

В отличии от соединения звездой, где фазные и линейные токи равны, при соединении треугольником они равны не будут. Применив первый закон Кирхгофа к узловым точкам a, b, c получим соотношение между фазными и линейными токами:

zavisimost-faznyx-i-linejnyx-tokov-pri-soedinenii-elektropriemnikov-v-treugolnik

Имея векторы фазных токов, используя данное соотношение, не трудно построить векторы линейных токов.

Симметричная нагрузка при соединении приемников треугольником

В отношении любой фазы можно применять формулы, которые справедливы для однофазных цепей:

formuly-dlya-odnofaznyx-cepej-primenimy-k-simmetrichnomu-treugolniku

Очевидно, что при симметричной нагрузке:

formuly-dlya-odnofaznyx-cepej-primenimy-k-simmetrichnomu-treugolniku2

Векторная диаграмма фазных (линейных) напряжений и токов при активно-индуктивной симметричной нагрузке показана ниже:

vektornaya-diagramma-faznyx-linejnyx-napryazhenij-i-tokov-pri-aktivno-induktivnoj-simmetrichnoj-nagruzke-dlya-soedineniya-v-treugolnik

В соответствии с формулой (1) были построены векторы линейных токов. Также стоит обратить внимание на то, что при построении векторных диаграмм для соединения треугольник вектор линейного напряжения Uab принято направлять вертикально вверх.

Векторы линейных токов часто изображают соединяющими векторы фазных токов, как это показано на рисунке b):

vektornaya-diagramma-faznyx-linejnyx-napryazhenij-i-tokov-pri-aktivno-induktivnoj-simmetrichnoj-nagruzke-dlya-soedineniya-v-treugolnik2

На основании данной векторной диаграммы можно записать: sootnoshenie-1. Такое же соотношение справедливо и для других фаз. Исходя из этого, можно вывести формулу зависимости между фазным и линейным током для соединения фаз потребителей треугольником при симметричной нагрузке formula-zavisimosti-mezhdu-faznym-i-linejnym-tokom-dlya-soedineniya-faz-potrebitelej-treugolnikom-pri-simmetrichnoj-nagruzke.

Пример

Трехфазная сеть имеет линейное напряжение UЛ = 220 В. К ней необходимо подключить трехфазный электроприемник с фазным напряжением в 220 В и содержащим последовательно подключенные активное rф = 8,65 Ом и индуктивное xф = 5 Ом сопротивления.

Решение

Поскольку линейные и фазные напряжения в этом случае будут равны, то выбираем способ соединения обмоток потребителя в треугольник.

Линейные и фазные токи, а также полные сопротивления фаз будут равны:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-simmetrichnyj-treugolnik1

Активная, реактивная и полная мощности электроприемника любой фазы будут равны:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-simmetrichnyj-treugolnik2

Векторные диаграммы приведены выше.

Несимметричная нагрузка при соединении приемников треугольником

В случае несимметричного сопротивления фаз, как и при соединении в звезду, для подключения к сети электроприемники разбивают на три примерно одинаковые по мощности группы. Подключение каждой группы производится к двум фазным проводом, у которых есть отличия по фазе:

sxema-podklyucheniya-nesimmetrichnoj-nagruzki-pri-soedinenii-v-treugolnik

В пределах каждой группы подключение приемников производится параллельно.

После замены сопротивления нескольких приемников в одной фазе на одно эквивалентное получим такую схему:

sxema-soedineniya-nesimmetrichnoj-nagruzki-elektropriemnikov-v-treugolnik

Углы сдвига между напряжением и током, мощности и фазные токи можно найти из формулы (2). В случае несимметричной нагрузки (в нашем случае схема выше) фазные мощности, токи, а также углы сдвига (cos φ) не будут равны. Векторная диаграмма для случая, когда фаза ab имеет активную нагрузку, bc – активно-индуктивную, ca – активно-емкостную, показана ниже:

vektornaya-diagramma-dlya-soedineniya-faz-v-treugolnik-i-nesimmetrichnoj-nagruzke

Для определения суммарной мощности всех фаз нужно применять выражение:

summarnaya-moshhnost-trexfaznoj-nesimmetrichnoj-seti-soedinennoj-v-treugolnik

Пример

Дана несимметричная электрическая цепь, включенная по схеме выше, с параметрами: UЛ = 220 В, rab = 40 Ом, xLbc = 10 Ом, rbс = 17,3 Ом, xcа = 5 Ом, rCcа = 8,65 Ом. Нужно определить линейные и фазные токи, а также мощности.

Решение

Воспользовавшись выражением для определения комплексных значений получим:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-nesimmetrichnyj-treugolnik1

Комплексные значения полных сопротивлений фаз: Zab = 40 Ом, Zbс = 17,3 + j10 Ом, Zbс = 8,65 – j5 Ом.

Комплексные и действующие значения линейных и фазных токов:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-nesimmetrichnyj-treugolnik2

Дольше можно проводить расчеты, не прибегая к комплексному методу:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-nesimmetrichnyj-treugolnik3

Общие активные и реактивные мощности:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-nesimmetrichnyj-treugolnik4

Углы сдвига между токами и напряжениями:

primer-rascheta-parametrov-sxemy-pri-soedinenii-v-nesimmetrichnyj-treugolnik5

Векторная диаграмма для несимметричного треугольника приводилась выше.

Источник

В трехфазной симметричной эц соединенной треугольником больше ток

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Читайте также:  Импульсные токи низкой частоты в физиотерапии это

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

— экономичность передачи электроэнергии на большие расстояния;

— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

— уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; — фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

; (2)
. (3)

Отметим, что всегда — как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Для симметричной системы ЭДС имеем

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой принцип действия у трехфазного генератора?
  2. В чем заключаются основные преимущества трехфазных систем?
  3. Какие системы обладают свойством уравновешенности, в чем оно выражается?
  4. Какие существуют схемы соединения в трехфазных цепях?
  5. Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
  6. Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
  7. Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
  8. На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
  9. Какие схемы соединения обеспечивают автономность работы фаз нагрузки?

Источник



Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

В трехфазных цепях применяют два вида соединений генераторных обмоток – в звезду и треугольник (рис. 1).

При соединении в звезду все концы фазных обмоток соединяют в один узел, называемый нейтральной или нулевой точкой, и обозначают, как правило, буквой O.

При соединении в треугольник обмотки генератора соединяют так, чтобы начало одной соединялось с концом другой. ЭДС в катушках в этом случае обозначают соответственно EBA, ECB, EAC. Если генератор не подключен к нагрузке, то по его обмоткам не протекают токи, т.к. сумма ЭДС равна нулю.

Рис. 1 Соединения генераторных обмоток – в звезду и треугольник

В звезду и треугольник включаются и сопротивления нагрузки так, как показано на рис. 2. Фазные сопротивления Za, Zb, Zc, Zab, Zbc, Zca, соединенные в треугольник или в звезду, называют фазами нагрузки.

Напряжение между началом и концом фазы — фазное напряжение Uф,

Таким образом, имеется три фазных напряжения—UA, UB и UС. Обычно за условное положительное направление э. д. с. генератора принимают направление от конца к началу фазы. Положительное направление тока в фазах совпадает с положительным направлением э. д. с., а положительное направление падения напряжения (напряжение) на фазе приемника совпадает с положительным направлением тока в фазе. Положительным направлением напряжения на фазе генератора, как и на фазе приемника, является направление от начала фазы к ее концу, т. е. противоположное положительному направлению э. д. с.

Напряжение между линейными проводами – линейное напряжение Uл.

Таким образом, имеется три линейных напряжения — UAB, UBC, UCA ,условные положительные направления которых приняты от точек, соответствующих первому индексу, к точкам, соответствующим второму индексу. Линейные напряжения определяются через известные фазные напряжения. Это соотношение может быть получено из уравнения, написанного по второму закону Кирхгофа для контура ANBA, если принять направление обхода контура от точки А к точке N и т. д.:

UA — UB — UAB = 0. (10.1)

Таким образом, действующее значение линейных напряжений равно векторной разности соответствующих фазных напряжений..

23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Читайте также:  Импульсные преобразователи постоянного тока в постоянный ток

Трехфазные источники питания практически всегда выполняются симметричными. В этом случае:

— действующие значения ЭДС

— комплексные, активные, индуктивные сопротивления

— фазные коэффициенты мощности

— действующие значения фазных напряжений

— действующие значения линейных напряжений

;

Рисунок 8.5 — Векторная диаграмма напряжений при нагрузке «звезда»

Из векторной диаграммы видно, что

В симметричной трехфазной цепи при соединении фаз звездой действующие фазные и линейные токи равны друг другу, а напряжения отличаются друг от друга в раз

24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.

При соединении трехфазного приемника треугольником при симметричной трехфазной системе:

— фазные напряжения оказываются равны линейным напряжениям

— фазные коэффициенты мощности

— соотношения между линейными и фазными токами по первому закону Кирхгофа для узлов a, b, c

где — комплексные линейные токи (IЛ), (IФ) — фазные токи.

— действующие значения линейных токов

— действующие значения фазных токов

В симметричной трехфазной цепи при соединении фаз нагрузки треугольником фазные и линейные напряжения равны друг другу, а линейный ток раз больше фазного

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Уравнением отвечает векторная диаграмма на рисунке 7.

Магнитные цепи. Магнитное поле проводника с током. Магнитное поле катушки с током. Магнитный поток. Магнитная индукция. Намагничивающая сила. Напряженность магнитного поля. Закон Ома для магнитной цепи.

Магнитная цепь — последовательность взаимосвязанных магнетиков, по которым проходит магнитный поток. При расчётах магнитных цепей используется почти полная формальная аналогия с электрическими цепями.

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био — Савара — Лапласа или теоремы о циркуляции (она же — закон Ампера)

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Магни́тный пото́к — поток как интеграл вектора магнитной … Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Магнитная индукция, вектор магнитной индукции В, основная характеристика магнитного поля (см. Индукция электрическая и магнитная). Единицей М. и. в Международной системе единиц служит тесла (тл), в СГС системе единиц — гаусс (гс), 1 тл = 10⁴ гс.

МАГНИТОДВИЖУЩАЯ СИЛА (мдс) (намагничивающая сила) — характеристика способности источников магнитного поля (электрических токов) создавать магнитные потоки; вводится при расчетах магнитных цепей по аналогии с эдс электрических цепей.

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

Эта формула выражает закон Ома для магнитной цепи.

26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.

Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т.к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость m может быть принятой равной 1,0.

К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. Функции B(H) имеют особое значение, т.к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения (рис. 1).

Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая изменения индукции при увеличении напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания. На рис. 1 она показана утолщенной линией.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля. Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только в текущем, но и в предыдущем состоянии, т.е. B2=f(H2, H1) — где H2 и H1 — соответственно текущее и предыдущее значения напряженности.

Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля Hm (рис. 2). Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания. Основная кривая намагничивания практически совпадает с начальной кривой.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm (рис. 2), соответствующей насыщению ферромагнетика , называется предельным циклом.

Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Источник