Меню

Вектор магнитной индукции прямого тока формула

III. Основы электродинамики

Тестирование онлайн

Магнитное поле

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов.

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем.

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.

Магнитное поле проводника с током

А теперь о том, что обнаружили Ханс Кристиан Эрстед и Андре Мари Ампер в 1820 г. Оказывается, магнитное поле существует не только вокруг магнита, но и любого проводника с током. Любой провод, например, шнур от лампы, по которому протекает электрический ток, является магнитом! Провод с током взаимодействует с магнитом (попробуйте поднести к нему компас), два провода с током взаимодействуют друг с другом.

Силовые линии магнитного поля прямого тока — это окружности вокруг проводника.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика или правилу правой руки.

Вектор магнитной индукции

Это векторная величина, характеризующая силовое действие поля.

Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:

Индукция магнитного поля в центре тонкого кругового витка радиуса r:

Индукция магнитного поля соленоида (катушка, витки которой последовательно обходятся током в одном направлении):

Принцип суперпозиции

Если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности

Сравнительная таблица магнитного и электрического полей

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Внутренняя структура магнита

Применение магнитного поля

Частицы диоксида железа на магнитной пленке хорошо намагничиваются в процессе записи.

Поезда на магнитной подушке скользят над поверхностью совершенно без трения. Поезд способен развивать скорость до 650 км/ч.

Работа головного мозга, пульсация сердца сопровождается электрическими импульсами. При этом в органах возникает слабое магнитное поле.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/12.7

§12. Постоянное магнитное поле

12.7 Расчет индукции магнитного поля.

Закон Био-Саварра-Лапласа и принцип суперпозиции позволяют рассчитать индукцию магнитного поля \(

\vec B\) , создаваемого произвольной системой электрических токов, в произвольной точке пространства. Для этого необходимо разбить все токи на бесконечно малые участки \(

(I \Delta \vec l)_k\) , записать выражения для векторов для индукции поля \(

(\Delta \vec B)_k\) , создаваемых этими элементами (пользуясь законом Био-Саварра-Лапласа) и просуммировать полученные выражения (что позволяет принцип суперпозиции) для всех участков тока

Img Slob-10-12-029.jpg

Рассмотрим еще раз участок проводника с током (Рис. 29) . Выражение для элемента тока \(

I \Delta \vec l\) записывается также в виде \(

I \Delta \vec l = \vec j S \Delta l = \vec j \Delta V\) . В том случае, когда электрические токи не являются линейными, а пространственно распределенными (то есть текут не только по тонким проводам), выражение для элемента тока \(

I \Delta \vec l\) следует заменить эквивалентным \(

\vec j \Delta V\) и провести суммирование по всем элементам объема., где протекают электрические токи.

Конечно, такое суммирование часто представляет собой громоздкую математическую задачу (в конце концов, для его выполнения можно воспользоваться компьютером), но, с физической точки зрения, изложенный метод дает полное решение задачи.

Рассмотрим несколько примеров расчета индукции магнитного поля по изложенной выше методике.

12.7.1 Магнитное поле кругового тока.

Img Slob-10-12-030.jpg

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R. Найдем индукцию поля в центре кольца в точке O (Рис. 30). Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био-Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока \(

(I \Delta \vec l)_k\) и вектор \(

\vec r_k\) , соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому \(\sin \alpha = 1\) . Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

Для любого другого элемента кольца ситуация абсолютно аналогична – вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

Img Slob-10-12-031.jpg

Усложним задачу — найдем индукцию поля в точке A, находящейся на оси кольца на расстоянии z от его центра (Рис. 31). По-прежнему, выделяем малый участок кольца \(

(I \Delta \vec l)_k\) и строим вектор индукции поля \(

(\Delta \vec B)_k\) , созданным этим элементом, в рассматриваемой точке. Этот вектор перпендикулярен вектору \(

Читайте также:  Что будет с магнитом если через него пропустить ток

\vec r\) , соединяющему выделенный участок с точкой наблюдения. Векторы \(

(I \Delta \vec l)_k\) и \(

\vec r_k\) , как и ранее, перпендикулярны, поэтому \(\sin \alpha = 1\) . Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы \(

r = r_k = \sqrt\) , а также одинаковы углы φ между векторами \(

(\Delta \vec B)_k\) и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции

Из рисунка следует, что \(

\cos \varphi = \frac\) , с учетом выражения для расстояния r, получим окончательное выражение для вектора индукции поля

Как и следовало ожидать, в центре кольца (при z = 0) формула (3) переходит в полученную ранее формулу (2).

Задания для самостоятельной работы.

  1. Постройте график зависимости индукции поля (3) от расстояния до центра кольца.
  2. Сравните полученную зависимость (3) с выражением для модуля напряженности электрического поля, создаваемого равномерно заряженным кольцом (§9.6). Объясните возникшие принципиальные различия между этими зависимостями.

Img Slob-10-12-032.jpg

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy (рис.32), а поле рассчитывается в плоскости yOz. Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y,z) рассчитываются по формулам:

Необходимое суммирование не может быть проведено аналитически, так как при переходе от одного участка кольца к другому изменяются расстояния до точки суммирования. Поэтому «простейший» способ провести такое суммирование – использовать компьютер.

Если же известно значение вектора индукции (или хотя бы имеется алгоритм его расчета) в каждой точке, то можно построить картину силовых линий магнитного поля. Очевидно, что алгоритм построения силовых линий векторного поля не зависит от его физического содержания, а такой алгоритм был кратко рассмотрен нами при изучении электростатики.

Img Slob-10-12-033.jpg

На рис. 33 картина силовых линий рассчитана при разбиении кольца на 20 частей, этого оказалось вполне достаточно, так как и при 10 интервалах разбиения получался практически тот же рисунок.

Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R. В этом случае формула (3) упрощается и приобретает вид

где \(I \pi R^2 = IS = p_m\) — произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μ в числителе на ε в знаменателе) с выражением для напряженности электрического поля диполя на его оси.

Img Slob-10-12-034.jpg

Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) – поэтому его поле совпадает с полем электрического диполя. Чтобы ярче подчеркнуть этот факт, на рис. 34 приведена картина силовых линий магнитного поля кольца, на больших расстояниях от него (сравните с аналогичной картиной для поля электрического диполя).

12.7.2 Магнитное поле прямого тока.

Img Slob-10-12-035.jpg

Рассчитаем индукцию магнитного поля, создаваемого бесконечным [1] проводником, по которому протекает электрический ток силой I (Рис. 35) Методика расчет остается прежней: мысленно разбиваем проводник на малые участки \(

I \Delta \vec l_k\). Согласно закона Био-Саварра-Лапласа в произвольной точке A, находящейся на расстоянии R от проводника, произвольный элемент тока создает магнитное поле, вектор индукции которого \(

(\Delta \vec B)_k\) направлен перпендикулярно плоскости, содержащей проводник и рассматриваемую точку (на Рис. 35 — перпендикулярно плоскости рисунка), модуль этого вектора равен

где rk — расстояние от выбранного участка проводника до точки наблюдения, αk — угол между проводником и направлением от элемента тока до точки наблюдения.

Img Slob-10-12-036.jpg

Договоримся об еще одном общепринятом соглашении. Достаточно часто приходится изображать векторы, перпендикулярные плоскости рисунка. В этом случае эти векторы изображаются в виде (рис. 36): небольшого кружка с точкой в центре, если вектор направлен «на нас» (видно «острие» вектора); кружка с перекрестием, если вектор направлен от нас (видно «оперение» вектора).

Векторы поле, созданных всеми другими участками проводника, направлены также, поэтому суммирование векторов в данном случае сводится к суммированию их модулей. Но даже вычислить сумму модулей не просто, так как для различных участков проводника расстояния rk и αk различны. Тем не менее, такое суммирование выполнимо, его результат выражается формулой, определяющей величину индукции магнитного поля бесконечного прямого тока

здесь не приведено вычисление последней суммы (которая равна \(

\sum_k \frac<\Delta l_k> \sin \alpha_k = \frac<2>\)), поверьте пока в справедливость полученного выражения, хотя бы потому, что оно имеет богатый физический смысл. Во-первых, эта формула совпадает с выражением для напряженности электрического поля, создаваемого бесконечной прямой равномерно заряженной нитью; во-вторых, оно соответствует результату опытов А.М. Ампера по изучению взаимодействия параллельных токов. Действительно, если один проводник создает магнитное поле, индукция которого обратно пропорциональна расстоянию до проводника, то на второй проводник действует сила Ампера, пропорциональная индукции поля, то есть обратно пропорциональная расстоянию между проводниками.

Дадим теперь строгий вывод формулы для суммы, фигурирующей в выражении (2). Проще всего она выводится с помощью операции интегрирования, но здесь мы дадим ее геометрический вывод. Для начала с помощью рис. 35 преобразуем каждое слагаемое этой формулы \(

\frac<\Delta l_k> \sin \alpha_k\) . Заметим, что произведение \(

\Delta l_k \sin \alpha_k\) равно длине отрезка CD, перпендикулярного вектору \(

\Delta l_k \sin \alpha_k = |CD|\) . Отношение же длины этого отрезка к расстоянию rk для малых длин элементов тока равно малому углу Δαk, под которым виден выделенный участок проводника

\frac<\Delta l_k> \sin \alpha_k = \frac<|CD|> = \Delta \alpha_k\) (3)

( точнее, это отношение равно тангенсу угла, который для малых углов равен самому углу, измеренному в радианах). Из того же рисунка следует, что отношение \(

\frac <\sin \alpha_k>= R\) равно расстоянию от точки наблюдения до проводника и не зависит от выбора участка проводника. С учетом этого соотношения и формулы (2) получим

Читайте также:  Двигатель постоянного тока 24в с редуктором

Таким образом, вычисление суммы (2) сводится к вычислению суммы \(

\sum_k \Delta \alpha_k \sin \alpha_k\) , в которой все углы являются малыми (поэтому число слагаемых велико), пусть углы αk изменяются от нуля до некоторого предельного значения αmax.

Img Slob-10-12-037.jpg

Для вычисления этой суммы применим искусственный прием (он встретится нам и в дальнейшем). Возьмем окружность (Рис. 37) радиуса R и разобьем ее точками C, C1, C2, …, CN на малые участки, угловой размер каждого равен Δα.

Хорды, которые образованы точками разбиения будем рассматривать как векторы \(

\vec a_0 = \overrightarrow , \vec a_1 = \overrightarrow , \ldots, \vec a_k = \overrightarrow >, \ldots\) . Сумма этих векторов очевидна – это вектор \(

\vec A\) , соединяющий начальную и конечную точки разбиения окружности:

\sum_k \vec a_k = \overrightarrow = \vec A\) . (4)

Теперь, внимание, если справедливо векторное равенство, то справедливо аналогичное выражение для любой проекции этих векторов. Введем декартовую систему координат с началом в центре окружности, ось Ox которой проходит через начальную точку. Длины построенных вписанных векторов равны \(

|\vec a_k| = R \Delta \alpha_k\) (точнее, это длина дуги, но для малых углов, длина стягивающей хорды стремится к длине дуги). Из рисунка 37 следует, что проекции этого вектора на оси координат равны, соответственно,

a_ = -R \Delta \alpha_k \sin \alpha_k ; a_ = R \Delta \alpha_k \cos \alpha_k\) .

Проецируя равенство (4) на оси координат получим

\begin (\vec A)_x = (\overrightarrow )_x = -|C_0 B| = \sum_k a_ = -\sum_k R \Delta \alpha_k \sin \alpha_k \\ (\vec A)_y = (\overrightarrow )_y = -|C_N B| = \sum_k a_ = \sum_k R \Delta \alpha_k \cos \alpha_k \end \) . (5)

Проекции суммарного вектора \(

\vec A\) на оси координат находятся просто

\begin (\vec A)_x = (\overrightarrow )_x = -|C_0 B| = -(R + R \cos (\pi — \alpha_)) = R(1 — \cos \alpha_) \\ (\vec A)_y = (\overrightarrow )_y = -|C_N B| = R \sin (\pi — \alpha_) = R \sin \alpha_ \end \) . (6)

Сравнивая выражения (5) и (6) получим искомые формулы

\sum_k \sin \alpha_k \Delta \alpha_k = 1 — \cos \alpha_; \sum_k \cos \alpha_k \Delta \alpha_k = \sin \alpha_\) . (7)

Еще раз подчеркнем, что суммирование в этих формулах проводится в пределах изменения угла от нуля до предельного значения αmax.

Осталось принять во внимание, что бесконечный прямой проводник виден из любой точки вне его под углом αmax = π, поэтому искомая сумма выражается формулой

что и требовалось доказать.

Оценим длину «бесконечного» в данном случае проводника – во сколько раз длина проводника должна быть больше расстояния до точки наблюдения, что бы погрешность расчета индукции поля по формуле (2), примененной к проводнику конечной длины, была пренебрежимо малой.

Img Slob-10-12-038.jpg

Пусть длина прямого проводника равна l, а индукция поля рассчитывается в точке A, находящейся на расстоянии r (считаем, что r [2]

Такая ошибка будет допущена, если отношение длины проводника к расстоянию до точки наблюдения равно \(

\frac = \frac<2><\varepsilon>\). Так для относительной ошибки ε = 1% искомое отношение равно \(

\frac \approx 15\). Итак, в рассмотренном случае «бесконечность» равна 15.

Примечания

  1. ↑ Конечно, «бесконечно длинный» значит, что его длина значительно превышает расстояние до той точки, где измеряется поле.
  2. ↑ Используя известную приближенную формулу \(

(1 + x)^\beta \approx 1 + \beta x\) (в данном случае \(\beta = \frac<1><2>\)).

Источник

Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.

Магнитное действие электрического тока

1820 г. X. Эрстед — датский физик, открыл магнитное дей­ствие тока. (Опыт: действие электрического тока на магнитную стрелку). 1820 г. А. Ампер — французский ученый, открыл механическое взаимо­действие токов и установил закон это­го взаимодействия.

Магнитное действие электрического тока

Магнитное взаимодействие, как и электрическое, удобно рассматриватьвводя понятие магнитного поля:

Магнитное поле порождается током, т. е. движущимися электрическими зарядами. противоположно направленные токи отталкиваются, однонаправленные токи притягиваются

Для двух параллельных бесконечно длинных проводников было установлено:

противоположно направленные токи отталкиваются,

однонаправленные токи притягиваются,

причем противоположно направленные токи отталкиваются, однонаправленные токи притягиваются, где k — коэффициент пропорциональности.

Для двух параллельных бесконечно длинных проводников

Отсюда устанавливается единица силы тока ампер в СИ: сила тока равна 1 А , если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2 . 10 7 Н .

сила тока равна 1 А, если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2.10 7Н

В СИ удобно ввести магнитную проницаемость вакуума В СИ удобно ввести магнитную проницаемость вакуума.

В СИ удобно ввести магнитную проницаемость вакуума

Вектор магнитной индукции.

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Вектор магнитной индукции

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

Модуль вектора магнитной индукции

Магнитная индукция В зависит от I и r , где r — расстояние от проводника с током до исследуемой точки. Если расстояние от проводника много меньше его длины (т. е. рассматривать модель бесконечно длинного проводника), тоМодуль вектора магнитной индукции,

где k — коэффициент пропорциональности. Подставляя эту формулу в уравнение для силы взаимодействия двух проводников с током, получим F=B . I . ℓ.

Отсюда Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка..

Таким образом, модуль вектора магнитной индукции Вектор магнитной индукцииесть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Единица измерения в СИ — тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

диница измерения в СИ - тесла (Тл)

Магнитный поток

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Магнитный поток (поток линий магнитной индукции)

Магнитный поток (поток линий магнитной индукции), где Вcosα представляет собой проекцию вектора В на нормаль к плоскости контура. Магнитный поток показывает, какое количество линий магнитной индукции пронизывает данный контур.

Магнитный поток (поток линий магнитной индукции)

Единица магнитного потока в СИ — вебер (Вб) . В честь немецкого физика В. Вебера.

Единица магнитного потока в СИ - вебер (Вб)

Опыт показывает, что линии магнитной индукции всегда замкнуты, и полный магнитный поток через замкнутую поверхность равен нулю. Этот факт является следствием отсутствия магнитных зарядов в природе.

Источник



Вектор магнитной индукции: формула

Один из параметров магнитного поля – его силовая характеристика. Она обозначает, с какой силой поле влияет на движущиеся в нём заряженные частицы. Это значение из разряда векторных величин, носит название магнитная индукция B→.

Индукция B→ проводника с током и соленоида

Физический смысл магнитной индукции (МИ)

Возможность действовать на предмет магнитным полем (МП) определяет сущность настоящей индукции. Она появляется в момент перемещения в катушке индуктивности магнита постоянной природы. Результатом такого движения является появление тока, с одновременным увеличением магнитного потока. Поскольку обмотка у катушки металлическая, а структура металла – кристаллическая решётка, то можно объяснить физические свойства этого явления.

Читайте также:  Основные причины поражения электрическим током работника

Электроны, находящиеся в этой решётке, при отсутствии магнитного воздействия находятся в покое. Движения никакого нет. Оно начинается в тот момент, когда электроны попадают под воздействие переменного МП (поле изменяется при перемещении постоянного магнита).

Значение возникающего в катушке тока зависит от диаметра жилы и количества витков, физических характеристик магнита и скорости его движения.

Единица размерности в системе Си рассматриваемой характеристики – тесла. Она обозначается буквами Тл.

Важно! Электроны в решётке, после попадания катушки в МП, разворачиваются под некоторым углом и выстраиваются вдоль силовых линий МП. Количество ориентированных частиц и однородность их размещения зависимы от величины поля.

Вектор – это вектор индукции магнитного поля (градиентный параметр МП).

Вектор магнитной индукции

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали.

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Определение направления B→

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Графическое обозначение линий МИ

Модуль вектора магнитной индукции

Чтобы определить величину вектора МИ, нужно узнать его модуль. Как определяется модуль вектора магнитной индукции (градиент)? Это можно понять на примере небольшой модели. Если поместить в поле подковообразного магнита горизонтально подвешенный проводник, то МП магнита будет действовать только на участок, расположенный в междуполюсном промежутке. Сила F→, действующая на этот участок, будет направлена под прямым углом к линиям индукции и самому проводнику. Она достигает своего максимума, когда орт МИ располагается перпендикулярно проводнику.

Значение модуля B→ будет равно отношению максимального значения этой силы F к произведению длины отрезка ∆L на силу движения зарядов (I), а именно:

Электрическая модель для определения модуля B→

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB:

dB = µ0 *I*dl*sin α /4*π*r2,

где:

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме.

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

Для кругового движения она выглядит так:

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

где:

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900).

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Видео

Источник