Меню

Вектор напряженности витка с током

Формула напряженности магнитного поля

Определение и формула напряженности магнитного поля

Напряженностью магнитного поля $\bar$ называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

где $\bar$ – вектор магнитной индукции, $\mu_<0>=4 \pi \cdot 10^<-7>$ Гн/м(Н/А 2 )- магнитная постоянная, $\bar$ – вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

В изотропной среде формула (1) преобразуется к виду:

где $\mu$ – скалярная величина, называемая относительной магнитной проницаемостью среды (или просто магнитной проницаемостью). В изотропной среде векторы напряженности магнитного поля и магнитной индукции совпадают по направлению.

Иногда напряженность магнитного поля $d \bar$ определяют как векторную величину, направленную по касательной к силовой линии поля, по модулю равной отношению силы (dF), с которой поле воздействует на единичный элемент тока (dl), который расположен перпендикулярно полю в вакууме, к магнитной постоянной:

Закон Био-Савара-Лапласа

Это важнейший в электромагнетизме закон. Он определяет вектор напряженности $d \bar$ в произвольной точке магнитного поля, которое создает в вакууме элементарный проводник длинны dl с постоянным током I:

где $d \bar$ – вектор элемента проводника, который по модулю равен длине проводника, направление совпадает с направлением тока; $\bar$ – радиус–вектор, который проводят от рассматриваемого элементарного проводника к точке рассмотрения поля; $r=|\bar|$ .

Вектор $d \bar$ – перпендикулярен плоскости, в которой находятся векторы $d \bar$ и $\bar$, и направлен так, что из его конца вращение вектора $d \bar$ по кратчайшему пути до совмещения с вектором $\bar$ происходило по часовой стрелке. Для нахождения направления вектора $d \bar$ можно использовать правило буравчика (Буравчик (винт) вращаем так, чтобы его поступательное движение совпадало с направлением тока, тогда направление, по которому вращается ручка винта, совпадает с направлением вектора напряженности поля, которое создает рассматриваемый ток).

Закон Био-Савара-Лапласа дает возможность вычислять величину полной напряженности магнитного поля, которое создает ток, текущий по проводнику любой формы.

Для нахождения полной напряженности магнитного поля, которое создает в исследуемой точке ток I, который течет по проводнику l, следует векторно суммировать все элементарные напряженности $d \bar$, порождаемые элементами проводника и найденные по формуле (4).

Единицы измерения

Основной единицей измерения момента силы в системе СИ является: [H]=А/м

Примеры решения задач

Задание. Чему равна напряженность (H) в центре кругового витка (R — радиус витка) с током I.

Решение. Каждый элементарный ток витка магнитное поле в центре окружности, напряженность которого направлена по положительной нормали к плоскости контура витка (рис.1). Поэтому, если элементарную напряженность поля найти по закону Био-Савара – Лапласа, то векторное сложение элементарных полей можно будет заменить на алгебраическое.

В соответствии с законом Био-Савара – Лапласа dH равно:

Применяя выражение (1.1) к нашему случаю, получим:

Возьмем интеграл по контуру, получим:

Ответ. $H=\frac<2 R>$

Формула напряженности магнитного поля не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Какова напряженность магнитного поля, которую создает электрон, движущийся прямолинейно и равномерно со скоростью v? Если точка, в которой исследуется поле, находится на расстоянии r от электрона на перпендикуляре к вектору скорости, если перпендикуляр провести через мгновенное положение частицы.

Решение. Сделаем рисунок.

Напряженность магнитного поля будем искать, применяя закон Био – Савара – Лапласа:

Если все заряды одинаковы (q), то плотность тока равна:

заряд отрицательный, следовательно, направления векторов $\bar$ и $\bar$ противоположны. n – концентрация зарядов. Подставим формулу (2.3) в (2.2), результат в (2.1) получаем:

где dN=Sdln — количество заряженных частиц в отрезке dl. В таком случае, напряженность поля, которое создает один заряд:

По условию задачи $\bar \perp \bar$ , значит модуль напряжённости магнитного поля в точке А (рис.2) будет равен:

Источник

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.
Читайте также:  Человек с высоким сопротивлением току

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.
Читайте также:  Выберите верное продолжение формулировки закона ома для участка цепи сила тока в участке цепи

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Напряженность магнитного поля

Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит. Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил. Этот момент характеризует величину напряженности поля в данном месте.

В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки. Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному, вне катушки — от северного к южному.

Единица СИ напряженности магнитного поля

Единица СИ напряженности магнитного поля:

Эрстед — Единица напряженности магнитного поля

Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

H напряженность магнитного поля внутри цилиндрической катушки, Ампер/метр
I сила тока в катушке, Ампер
n число витков, Ампер
l длина катушки (т. е. силовых линий в области однородного поля), метр

то напряженность магнитного поля определяется формулой

Произведение I·n часто называют числом ампер-витков.

Напряженность магнитного поля вокруг прямолинейного проводника

Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.

H напряженность магнитного поля прямолинейного проводника, Ампер/метр
I сила тока в проводнике, Ампер
r расстояние от проводника в плоскости, перпендикулярной проводнику, метр

то напряженность магнитного поля определяется формулой

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

H напряженность магнитного поля в центре витка с током, Ампер/метр
I сила тока в витке, Ампер
r радиус витка, метр

то напряженность магнитного поля определяется формулой

Источник



Следовательно, искомая напряженность будет равна

Направление вектора H находят по правилу буравчика. Располагают его жало вдоль проводника. Вращение рукоятки должно вызвать перемещение буравчика в направлении протекания тока. Направление вращения концов рукоятки совпадает с направлением вектора напряженности в данной точке (Рис.4).

H найдем интегрированием выражения (9) вдоль кон­тура.

где L — длина контура. Так как контур — окружность, то . Тогда для H получим

Важной характеристикой поля является цир­куляция вектора, представляющего собой силовую ха­рактеристику поля. Циркуляцией вектора по кон­туру L называют интеграл

Вычислим циркуляцию напряженности маг­нитного поля, созданного прямым проводником с то­ком, по контуру L (рис.4). Контур лежит в плоскости перпендикулярной проводнику и охватывает этот проводник. Вид на рассмат­риваемый контур представлен на рис. 6б.

Согласно формуле (6) лежит в плоскости контура и для скалярного произведения на ( -вектор перемещения вдоль контура), в соответствии с рис.6б, имеем . Напряженность поля H, созданного в данной точке пространства бесконечным прямым про­водником с током I равна.

Согласно рис. 6б , так как в случае ма­лости , dL можно рассматривать как гипотенузу, а dr как катет прямоугольного треугольника. В этом приближении (ма­лость угла ) dr является дугой окружности радиуса r, на которую опирается центральный угол и, следова­тельно, .

С учетом сказанного, для получим

и циркуляция вектора вдоль замкнутого контура, охватывающего проводник с током, будет равна (12)

так как, при движении вдоль контура, радиус-вектор совершит полный оборот, и приращение угла будет равно 2 . Если контур не охватывает про­водник с током, то приращение угла j равно , так как при движе­нии из точки 1 в точку 2 по части контура 1 имеем положительное при­ращение угла (рис.7), а при движении из точки 2 в точку 1 по части контура II отрицательное. В резуль­тате в сумме получим . Выражение (12) получено нами в предположении, что контур ле­жит в плоскости, перпендикуля­рной проводнику с током, а про­водник прямой. Однако можно по­казать, что оно справедливо при произвольной ориентации контура от­носительно проводни­ка и произвольной форме про­водника. Если контур охватыва­ет несколько проводников с током, то под I следует пони­мать алгебраическую сумму токов всех проводников, охватываемых контуром. При этом ток счита­ется положительным, если вектор , созданного им поля, совпа­дает с направлением обхода контура и отрицательным в противном случае.

Таким образом, циркуляция вектора напряженности магнитного поля вдоль замкнутого контура равна полной силе тока, протекающего сквозь поверхность, ограниченную рассматриваемым контуром(закон Полного тока). Силовые поля, для которых циркуляция силовой характеристики поля отлична от нуля, называют вихревыми. Магнитное поле, в отличие от электростатического, является вихревым.

В ряде случаев выражение (12) удобно использовать для расчета характеристик полей проводников сложной конфигурации. Применим формулу (12) для нахождения напряженности поля тороидальной катушки (рис.8). Из соображений симметрии следует, что напряженность поля одинакова во всех точках окружности, центр которой совпадает с центром тороида. Выберем такую окружность в качестве контура интегрирования.

Очевидно, что и, так как H=const , вдоль выбранного контура, то

Полный ток через площадь, ограниченную контуром, очевидно, будет равен NI, где N – число витков тороидальной катушки. Следовательно , откуда

Поле тороида неоднородно. У внутренней границы его напряженность , а у внешней . Их относительная разность равна . Устремим радиус тороидальной катушки в бесконечность. В этом случае стремится к нулю и . Следовательно, поле такой катушки будет однородным. Отрезок окружности очень большого радиуса можно рассматривать как отрезок прямой, следовательно, любой отрезок тороида в случае, когда r стремится к бесконечности, можно рассматривать как прямую катушку. Такую катушку называют соленоидом. В формуле (13) — длина тороидальной катушки, отношение же ) = n это число витков, приходящееся на единицу длины. Следовательно, соленоид создает однородное магнитное поле, напряженность которого равна

Мы рассмотрели поля, создаваемые проводниками и контурами различной формы. Вернемся к рассмотрению вопроса о силовом действии магнитного поля на элемент тока в этом поле.

Читайте также:  Лабораторная работа токи короткого замыкания

Согласно формуле (1) на элемент тока в магнитном поле с индукцией действует сила , которую называют силой Ампера. По сути своей это результирующая сил действующих со стороны магнитного поля на движущиеся в проводнике носители зарядов. Получим из формулы (1) выражение для силы, действующей на движущуюся заряженную частицу. Для этого представим в следующем виде:

Здесь — плотность тока, а S – площадь поперечного сечения проводника. Считаем, что во всех точках сечения проводника одинакова.

Плотность тока находится по формуле:

где V– средняя скорость направленного движения носителей зарядов в проводнике, n – их плотность, q – заряд носителя.

Подставим (16) в формулу (1) для силы, получим

Но — полное число носителей зарядов в рассматриваемом элементе проводника dL . Следовательно, сила , действующая на носитель заряда,движущийся в проводнике, будет равна . (18)

Эта сила носит название силы Лоренца. Мы получили выражение для нее в предположении, что заряженные частицы (носители зарядов) движутся в проводнике. Очевидно, что для проявления действия этой силы на движущуюся заряженную частицу наличие проводника необязательно. Сила действует на любую заряженную частицу, движущуюся в магнитном поле в направлении, отличном от направления вектора .

Рассмотрим поведение замкнутого контура с током в однородном магнитном поле (рис. 9а). Контур представляет собой прямоугольную рамку. (Рис. 9б вид на контур сверху). На рис.9 — единичный вектор к плоскости контура. Направление его выбираем так, чтобы из конца вектора мы видели ток, текущим против часовой стрелки. Силы , действующие на стороны a контура, равны по величине и противоположно направлены. Они могут вызвать только деформацию контура. Силы образуют пару сил, вызывающих вращение контура вокруг некоторой оси. Они стремятся развернуть контур так, чтобы плоскость его стала перпендикулярно к вектору . Вращающий момент пары направлен по оси вращения, а величина его равна

Так как согласно (1) , то

Здесь учтено, что площадь S , ограниченная контуром, равна .

В соответствии со схемой рис.9а это выражение можно представить в векторном виде.

Вводя в рассмотрение вектор для , получим . (19)

Вектор называют магнитным моментом контура с током. Направление его определяют по правилу буравчика. Вращают рукоятку буравчика по направлению протекания тока в контуре. Направление перемещения буравчика при вращении определит направление вектора к плоскости, ограниченной контуром.

Мы получили выражение для в случае прямоугольного контура. В действительности эта формула справедлива для контуров с током произвольной формы. Таким образом, на контур с током в магнитном поле действует вращающий момент, стремящийся развернуть его таким образом, чтобы вектор магнитного момента контура совпал по направлению с вектором . Ориентирующее действие магнитного поля на контур с током позволяет использовать его для нахождения направления вектора в данной точке пространства. Все сказанное справедливо не только для контуров с током, но и для постоянных магнитов, которым также можно приписать некоторый магнитный момент. Ориентирующее действие магнитного поля Земли на магнитную стрелку использовано в данной работе для нахождения горизонтальной составляющей напряженности магнитного поля Земли.

Земля имеет магнитное поле. Вектор напряженности этого поля в любой точке пространства может быть разложен на горизонтальную и вертикальную составляющие (рис.10). На горизонтально расположенную стрелку с магнитным моментом в магнитном поле Земли действует вращающий момент

где — горизонтальная составляющая вектора магнитной индукции магнитного поля Земли (для воздуха ).

Магнитная стрелка поворачивается в магнитном поле Земли до тех пор, пока ее направление не совпадет с направлением .

Тангенс-гальванометром называют круговой проводник, в центре которого расположена магнитная стрелка. Расположим тангенс-гальванометр так, чтобы плоскость витка совпадала с направлением стрелки, и подключим его к источнику тока. Стрелка будет находиться не только в магнитном поле Земли, но и в поле кругового тока, и установится в направлении вектора (рис.11). Так как перпендикулярен , то

С учетом формул (4) и (11) индукция магнитного поля в центре N витков кругового тока радиусом R равна (22)

Тогда для горизонтальной составляющей вектора индукции и напряженности магнитного поля Земли соответственно имеем

Измерив силу тока I и угол отклонения магнитной стрелки и зная число и радиус витков кругового тока, можно экспериментально определить горизонтальную составляющую индукции и напряженности магнитного поля Земли. Если же известно из предыдущих измерений значение горизонтальной составляющей H или B магнитного поля Земли, то, определив экспериментально угол отклонения магнитной стрелки, при помощи описанного устройства можно оценить величину тока

которая прямо пропорциональна тангенсу угла отклонения магнитной стрелки. Отсюда и происходит название используемого в работе прибора «тангенс-гальванометр». Коэффициент пропорциональности перед tg в формуле (25) называют постоянной тангенс-гальванометра

Описание установки.

Для выполнения работы собрать электрическую цепь из источника тока, потенциометра, переключателя на два положения, амперметра и тангенс-гальванометра в соответствии с рис.12. Переключатель в данной работе позволяет изменять направление тока в витках. Число витков и радиус витков приведены в надписях к прибору.

Порядок выполнения работы:

1. Установить тангенс-гальванометр так, чтобы его магнитная стрелка оказалась в плоскости круговых витков.

2. Собрать электрическую цепь в соответствии с рис.12. Движок реостата установить в положение а.

3. Изменяя величину тока при помощи потенциометра, определить углы отклонения магнитной стрелки от первоначального положения при 5 значениях силы тока (указываются преподавателем). Изменить положение переключателя и повторить измерения.

4. Результаты измерений записать в таблицу и вычислить и по формулам (23) и (24) для каждого значения силы тока, используя средние значения углов отклонения.

5. Вычислить постоянную тангенс-гальванометра по формуле (26), взяв среднее значение .

6. Вычислить абсолютную ошибку для каждого из измерений по формуле

и результаты занести в таблицу.

7. Вычислить средние значения

№№ п/п Величина тока I,А Угол отклонения в градусах tg a Hг, А/м г, А/м Вг=mНг, Тл
Вправо Влево Средний
Средние значения

Для получения зачета изучить следующие теоретические вопросы:

1.Понятие о магнитном поле.

2.Магнитный момент контура с током.

3.Поведение контура с током в магнитном поле.

4.Силовые характеристики магнитного поля. Магнитная проницаемость среды.

7. Закон Био-Савара-Лапласа. Принцип суперпозиции полей.

8.Закон полного тока.

9.Напряженность и индукция магнитного поля прямого тока и в центре кругового тока.

10.Магнитное поле тороида и соленоида.

1. И.В.Савельев. Курс общей физики, т.2, п.п. 39-41, 1977.

2. И.В.Савельев. Курс общей физики, т.2,п.п.40,42-44, 1982.

3. Г.А.Зисман, О.М.Тодес. Курс общей физики, т.2, п.п.29,32, 1974.

4. В.М.Яворский, А.А.Детлаф, Л.Б.Милковская. Курс физики, т.2, гл.14.1, 14.2, 15.1, 15.2, 15.4, 15.5, 1977.

Источник