Меню

Виды электросетей по напряжению

Классификация электрических сетей

Электрическая сеть – это совокупность различного напряжения линий и подстанций, задачей которых является передача и распределение электроэнергии.

Электрические сети делят по назначению, месту прокладки, величине напряжения, принципу построения, роду тока и некоторым другим признакам.

Классификация электрических сетей по роду тока

По роду тока электрические сети традиционно разделяют на два вида – сети переменного и постоянного тока.

Наиболее распространёнными являются сети переменного тока. Постоянный ток наиболее часто применяют для питания электрифицированного транспорта, под него и сооружают линии электроснабжения постоянным током. В некоторых отдельных случаях на промышленных предприятиях возникает необходимость в построении систем электропитания постоянным током, например, для электролиза растворов или электрометаллургии, а также при наличии электроприводов постоянного тока.

В последнее время все больший интерес проектировщиков вызывают высоковольтные линии электропередачи постоянного тока (HVDC), активно применяемы для передачи электроэнергии от электростанций альтернативной энергетики. Плюс таких систем в их большей экономичности, возможности параллельной работы с различными линиями постоянного тока (например, линии электропередач переменного тока с частотами 50 Гц и 60 Гц невозможно запустить на параллельную работу), а также в отсутствии необходимости синхронизации частот ЛЭП.

Классификация электрических сетей по величине напряжения

По напряжению электрические сети делят классически на два вида – до 1000 В и выше 1000 В. Для избегания путаниц и удобства эксплуатации серийных электротехнических изделий в установках переменного тока приняты следующие стандарты напряжений:

  • До 1000 В – 127 В, 220 В, 380 В, 660 В;
  • Выше 1000 В – 3 кВ, 6 кВ, 10 кВ, 20 кВ, 35 кВ, 110 кВ, 150 кВ, 220 кВ, 330 кВ, 500 кВ, 750 кВ;

По условиям нормальной эксплуатации электроприемники, в зависимости от назначения, допускают строго ограниченные отклонения напряжения от его номинального значения. Для поддержания напряжений на заданном уровне нужно компенсировать его потерю в трансформаторах. Именно для этой цели номинальные напряжения генераторов, а также вторичных обмоток трансформаторов имеют номиналы на 5% больше чем электроприемники.

Для сетей местного освещения могут применять малые напряжения, а именно 12 В, 24 В, 36 В.

Классификация электрических сетей по назначению

По назначению сети электрические делят на распределительные и питающие.

Питающая линия – это линия, осуществляющая питание подстанции (П) или распределительного пункта (РП) от центра питания (ЦП) без распределения электрической энергии по ее длине.

Распределительная линия – линия, осуществляющая питание ряда трансформаторных подстанций от РП или ЦП.

В сетях напряжением до 1000 В питающими линиями называют линии идущие от трансформаторных подстанций к распределительным щитам или пунктам, а распределительными называют линии, которые идут непосредственно от распределительных щитов или пунктов к электроприемникам.

Ниже показана схема распределения высокого напряжения с наличием питающей и распределительной сети (а)) и только распределительной (б)):

Схема построения электрической сети высокого напряжения

Сети высокого напряжения сооружают в случаях отдаленности на довольно большое расстояние источника напряжения или большого количества трансформаторных подстанций, которые значительно отдалены друг от друга, например, при электроснабжении крупных промышленных предприятий или городов.

Классификация электрических сетей по принципу построения

По принципу построения подразделяют электрические сети на замкнутые и разомкнутые.

Разомкнутая сеть – это совокупность разомкнутых линий получающих питание от одного общего источника питания ИП с одной стороны (рисунок ниже):

Разомкнутая система электроснабжения

Ее главным недостатком можно назвать прекращения питания всех электроприемников участка, на котором произошло отключение при обрыве линии.

В замкнутой системе все наоборот — питание поступает от двух источников ИП и при обрыве магистрали в любом месте питание электроприемников не прекратится. Ниже показана простейшая схема замкнутой сети:

Простейшая схема замкнутой сети питания электроприемников

Например, в случае обрыва магистрали в точке К электроприемники 1,2,3,4 будут получать питание по верхней магистрали, а 5,6,7,8 по нижней. В зависимости от требований надежности электроснабжения замкнутые системы могут иметь один и более источников питания. Ниже показан пример схемы с двухсторонним питанием:

Замкнутая сеть с двухсторонним питанием

Классификация электрических сетей по месту прокладки

Различают наружные и внутренние сети.

Наружные сети могут выполнятся голыми проводами, подвешенными на опорах (воздушные линии), а также специальными кабелями проложенными в блоках (подземные линии), траншеях, коллекторах.

Внутренние сети прокладывают внутри зданий с помощью изолированных проводов (провод с изоляцией), кабелей, шин (токопроводов).

Источник



Виды электрических сетей

Виды электрических сетейЭлектрические сети предназначение для передачи электроэнергии от источников питания к потребителям и для связи электростанций и объединений энергосистем. В состав электросети входят как электрические линии, так и трансформаторные и распределительные подстанции.

Электрические сети подразделяют по ряду признаков:

по району обслуживания.

Читайте также:  Холодное копчения с высоким напряжением своими руками

ВЛ 110 кВ

По роду тока различают электросети постоянного и переменного тока. Производство, передача и распределение электроэнергии у нас в стране осуществляется при помощи трехфазного переменного тока с частотой 50 гц. Большая часть потребителей работает на переменном токе. Поэтому основным видом электросетей являются сети трехфазного переменного тока.

Постоянный ток, а следовательно, и сети постоянного тока, применяют только в установках специального назначения. Постоянный ток очень высокого напряжения применяется для передачи значительных мощностей на большие расстояния. Например, в статье «Линии передачи постоянного тока» описана ВЛ на напряжение 1500 кВ с пропускной мощностью до 6000 МВт.

По напряжению электросети, как и все электроустановки, разделяют на сети напряжением до 1000 В и сети с напряжением выше 1000 В или условно на электросети низкого и высокого напряжения.

Опора воздушной линии электропередачи

По конфигурации электросети подразделяют на разомкнутые (радиальные) и замкнутые. Разомкнутой называю сеть, в которой потребители электроэнергии получают питание только с одной стороны.

Замкнутой называют сеть, в которой потребители электроэнергии могут получать питание не менее чем с двух сторон.

По назначению электросети подразделяются на питающие и распределительные. Распределительные электросети служат для непосредственного питания электроприемников: электродвигателей, трансформаторов и т.п.

Питающие электросети служат для передачи электроэнергии на распределительные подстанции (РП), от которых питаются распределительные сети. В некоторых сетях трудно бывает четко определить сеть на питающую и распределительную.

Воздушная линия электропередачи

По району обслуживания различают местные и районные электросети. Местными электросетями обычно называют сети напряжением до 35 кВ включительно, питающие потребителей электроэнергии в радиусе не более 15-30 км при передаваемой мощности на одноцепной линии до 10 — 15 МВА (промышленные, городские, сельские сети).

Районными электросетями являются сети напряжением 35 — 110 кВ и выше, состоящие из линий электропередачи, связывающих на параллельную работу отдельные электростанции и питающих районные подстанции.

В первые годы развития электроснабжения в больших районах строились линии высокого напряжения (110 и 220 кВ) для транзитной передачи электрической энергии от районных станций до крупных потребителей. Такие передачи состояли из повысительных и понизительных трансформаторов и воздушных или кабельных линий, соединяющих их.

Эти сооружения назывались электропередачами. В настоящее время они работают большей частью не обособленно, а связаны между собой и образуют сети высокого напряжения. Отдельные же электропередачи строятся только на более высокие напряжения.

Пример схемы электрической системы:

От мощной гидроэлектростанции электроэнергия передается через повысительную подстанцию и линию электропередачи 220 кВ длиной до 300 км и понизительную подстанцию в районную сеть 110 кВ. Эта сеть питается также через линию электропередачи 110 кВ длиной до 150 км и повысительную подстанцию от районной тепловой электростанции конденсационного типа.

Внутри кольцевой районной сети 110 кВ имеются понизительные подстанции, обслуживающие большой промышленный район, в центре которого находится ТЭЦ, работающая на привозном топливе и снабжающая электрической и тепловой энергией потребителей промышленного района, расположенных вблизи станции.

Для связи с кольцевой районной сетью 110 кВ, а именно для отдачи и получения электроэнергии при различных режимах работы ТЭЦ, последняя имеет подстанцию 110 кв. От районной сети 110 кВ через понизительную подстанцию электропередачи 35 кВ и понизительные подстанции 35/6 кВ питаются местные сети 6 кВ.

В нижней части схемы показана присоединенная к системе местная электростанция сравнительно небольшой мощности с распределяющей сетью 6 кВ, непосредственно отходящей от шин станции (вправо), и питающей сетью 6 кВ (влево). Понизительные трансформаторы сети 6 кВ питают распределительные сети 380/220 В.

Источник

Общая классификация электрических сетей и характеристика по каждому пункту.

date image2015-10-22
views image19656

facebook icon vkontakte icon twitter icon odnoklasniki icon

Определение энергетической системы; электроэнергетической системы.

Энергетическая система – это совокупность всех звеньев цепочки получения, преобразования, распределения и использования тепловой и электрической энергии. Схематично энергетическая система представлена на рис. 1.1.

Электрическая или электроэнергетическая система представляет собой часть энергетической системы. Из нее исключаются тепловые сети и тепловые потребители.

Общая классификация электрических сетей и характеристика по каждому пункту.

Электрические сети классифицируются:

— по номинальному напряжению;

— по конструктивному исполнению;

— по степени резервированности;

— по выполняемым функциям;

— по характеру потребителей;

— по назначению в схеме электроснабжения;

— по режиму работы нейтрали.

По роду тока различают сети переменного и постоянного тока. Основное распространение получили сети трехфазного переменного тока.

Однофазными выполняются внутриквартирные сети. Они выполняются как ответвление от трехфазной четырехпроводной сети.

Сети постоянного тока используются в промышленности (электрические печи, электролизные цеха) и для питания городского электротранспорта.

Постоянный ток используется для передачи энергии на большие расстояния. Но, на постоянном токе работает только ЛЕП: в вначале и конце ЛЕП строятся преобразовательные подстанции, на которых происходит преобразование пере-менного тока в постоянный и обратно. Использование постоянного тока обеспе-чивает устойчивую параллельную работу генераторов ЭС.

Читайте также:  Нужен ли стабилизатор напряжения для компьютера дома

Постоянный ток используется для организации связи электроэнергетических систем. При этом отклонение частоты в каждой системе практически не отража-ется на передаваемой мощности.

Существуют передачи пульсирующего тока. В них электроэнергия передает-ся по общей линии одновременно переменным и постоянным токами. У такой передачи увеличивается пропускная способность по отношению к ЛЕП перемен-ного тока и облегчается отбор мощности по сравнению с ЛЕП постоянного тока.

По напряжению согласно ГОСТ сети делятся на сети напряжением до 1000 В и сети напряжением выше 1000 В.

В литературе встречается и такое деление:

— сети низких напряжений (220 – 660 В);

— сети средних напряжений (6 – 35 кВ);

— сети высоких напряжений (110 – 220 кВ);

— сети сверхвысоких напряжений (330 – 750 кВ);

— сети ультравысоких напряжений (более 1000 кВ).

По конструктивному исполнению различают воздушные и кабельные сети, проводки и токопроводы.

Токопровод – это установка для передачи и распределения электроэнергии, которая испльзуется на промышленных предприятиях. Состоит из неизолированных или изолированных проводников, изоляторов, защитных оболочек и опорных конструкций.

Электропроводки предназначены для выполнения сетей в зданиях.

По расположению сети делятся на наружные и внутренние. Наружные выполняются неизолированными (голыми) проводами и кабелями. Внутренние выполняются изолированными проводами.

По конфигурации сети делятся на разомкнутые (см. рис. 2.1) и замкнутые (см. рис. 2.2).

Разомкнутые сети питаются от одного источника питания и передают элект-роэнергию к потребителям только в одном напрявлении.

В замкнутых сетях электроприемники получают по меньшей мере с друх сто-рон. Различают простые замкнутые сети и сложнозамкнутые сети. Простые замкнутые сети имеют один замкнутый контур, сложнозамкнутые – несколько. К простым замкнутым сетям относятся кольцевая сеть и сеть с двухсторонним пита-нием.

По степени резервированности сети делятся на нерезервированные и резервированные. Замкнутые сети всегда резервированные, потому что при отключении любой ЛЕП или любого источника питания ни один из потребителей не потеряет питание. Магистральные сети, выполненные одной цепью, являются нерезервированными, так как часть или все потребители теряют питание в зависимости от места повреждения и мест установки коммутационной аппаратуры. Магистральные сети, выполненные двумя цепями, являются резервированными.

По выполняемым функциям различают системообразующие, питающие и распределительные сети.

Системообразующие сети – это сети напряжением 330 кВ и выше. Выполняют функцию формирования энергосистем, объединяя мощные ЭС и обеспечивая их функционирование как единого объекта управления. Эти сети характеризуются большим радиусом охвата, значительными нагрузками. Сети выполняются по сложнозамкнутым многоконтурным схемам с несколькими ИП.

Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и от шин 110 – 220 кВ ЭС к районным подстанциям. Питающие сети обычно замкнуты. Их напряжение – 110 – 220 кВ.

Распределительная сеть предназначена для передачи электроэнергии на не-большие расстояния от шин низшего напряжения районных ПС непосредственно к потребителям. Такие сети выполняют по разомкнутым схемам. Различают расп-ределительные сети высокого напряжения (более 1000 В) и низкого напряжений (до 1000В).

По характеру потребителей сети делятся на городские, промышленные и сельские.

Городские сети характеризуются высокой плотностью электрических нагрузок (до 12 МВ·А/км 2 ) и большим количеством разнородных потребителей.

К промышленным сетям относятся сети промышленных предприятий. Эти сети делятся на сети внешнего и внутреннего электроснабжения. Напряжение зависит от близости к питающей ПС. Если она расположена вблизи предприятия, то напряжение внешнего электроснабжения – 6 — 10 кВ, а внутреннего – до 1000 В. Если питающая ПС расположена далеко, то напряжение внешнего электроснабжения повышается. Для промышленных сетей существует понятие “глубокого ввода”, когда высокое напряжение (220 –330 кВ) заводится на территорию завода, минуя дополнительные трансформации. В этом случае в схеме внутреннего элект-роснабжения используется напряжение 6 – 35 кВ.

Сельские сети – сети напряжением 0,4 – 110 кВ. Они предназначены для питания небольших населенных пунктов, сельскохозяйственных предприятий. Отличаются большой протяженностью и малой плотностью нагрузки (до 15 кВ·А/км 2 ). Сельские сети выполняются, в основном, воздушными ЛЕП по разомкнутым схемам.

По назначению в схеме электроснебжения сети делятся на местные и районные.

Местные сети охватывают площади радиусом до 30 км. Они имеют малую плотность нагрузки и напряжение до 35 кВ включительно. Это сельские, комму-нальные и фабрично-заводские сети. К местным сетям относятся “глубокие вводы” напряжением 110 кВ.

Районные сети охватывают большие районы и имеют напряжение 110 кВ и выше. По районным сетям осуществляется передача электроэнергии от ЭС в места ее потребления. К районным сетям относятся основные сети системы, магистральные ЛЕП внутрисистемной связи и межсистемные связи.

Читайте также:  Воздушный компрессор не запускается при низком напряжении

По режиму работы нейтрали сети делятся:

— на сети с изолированной нейтралью;

— на сети с компенсированной нейтралью;

— на сети с эффективно – заземленной нейтралью;

— на сети с глухозаземленной нейтралью.

Режим работы нейтрали определяется способом соединения нейтрали с землей. В сетях с изолированной нейтралью электроустановки не имеют связи з землей. В сетях с компенсированной нейтралью имеется связь через дугогасительную катушку. В сетях с глухозаземленной нейтралью – непосредственная связь с землей. В сетях с эффективно-заземленной нейтралью – часть нейтралей трансформаторов заземлена, часть – разземлена (в нейтраль включены разъединитель и разрядник).

Выбор режима работы нейтрали в сети до 1000 В определяется безопасностью работ. В сети выше 1000 В – двумя причинами:

— стоимостью изоляции оборудования;

— величиной токов однофазного короткого замыкания на землю.

В соответствии с “Правилами устрой ства электроустановок” электроуста-новки до 1000 В работают либо с глухозаземленной, либо с изолированной нейтралью.

В первом случае имеем четырехпроводную сеть. Замыкание любой фазы на землю приводит к короткому замыканию в сети (ток повреждения большой). Предохранитель поврежденной фазы перегорает, а две здоровые фазы остаются в работе при фазном напряжении.

Во втором случае имеем трехпроводную сеть. В такой сети замыкание фазы на землю не приводит к значительному росту тока в месте повреждения, фаза не отключается. Фазные напряжения неповрежденных фаз возрастают до линейных значений, т.е. возрастают в раз.

В обоих случаях изоляция рассчитывается на линейное напряжение.

Сети напряжением 6 — 35 кВ считаются сетями с малыми токами замыкания на землю (до 500 А). Работают такие сети либо с изолированной, либо с компенсированной нейтралью.

В сети с изолированной нейтралью при касании фазы землю напряжение этой фазы становится равным нулю, а на здоровых фазах возрастает до линейного значения (см. рис. 2.1 а). Поэтому изоляция должна быть рассчитана на линейное напряжение. Емкостный ток в поврежденной фазе равен нулю, а в неповреж-денных фазах увеличивается в раз (см. рис. 2.1 б). Суммарный емкостный ток, равный 3 I, будет протекать через место замыкания фазы на землю и источник питания. Если величина этого тока в сети 6 – 10 кВ превышает 30 А, а в сети 35 кВ – 10 А, то в нейтраль трансформаторов необходимо включить дугогасительную катушку. Ее индуктивный ток складывается с емкостным током замыкания на землю, который может быть скомпенсирован частично или полностью.

Сети 6 – 35 кВ не требуют немедленного отключения и могут работать несколько часов. Но повреждение можно обнаружить только при поочередном отключении потребителей.

Сети напряжением 110 кВ и выше считаются сетями с большими токами замыкания на землю (свыше 500 А). Они не могут работать с изолированной нейтралью, так как изоляция в этом случае должна рассчитываться на линейное напряжение. А это дорого. Сети работают с заземленной нейтралью. При этом ток однофазного короткого замыкания может превышать ток трехфазного к.з. В этом случае коммутационная аппаратура должна выбираться по большему току, т.е. однофазному.

В месте повреждения в таких сетях возникает электрическая дуга с большим током. Дуга гасится при отключении повреждения. Так как большинство к.з являются самоустраняющимися, то для проверки линия включается вновь под действием АПВ. Если к.з. самоустранилось, то ЛЕП остается в работе, если нет, то повреждение отключается вновь. В переходном режиме и при коммутациях в сети возникают внутренние перенапряжения. Величина перенапряжения влияет на выбор изоляции. Величину перенапряжения стараются ограничить. Для этого заземляют нейтрали оборудования. Но чем больше заземленных нейтралей, тем меньше величина перенапряжения, но тем больше величина тока однофазного к.з.

В сетях 110 кВ поступают следующим образом. Часть нейтралей разземляют, чтобы величина токов однофазного к.з. не превышала величину токов трехфазного кз. Заземляют нейтрали трансформаторов на электростанциях, узловых подстанциях и на тупиковых потребительских подстанциях. Напряжение на неповрежденных фазах по отношению к земле в установившемся режиме не должно быть больше 0,8 Uном (линейного). Такие сети называются сетями с эффективно-заземленной нейтралью.

В сетях 220 кВ и выше применяют глухое заземление нейтрали всех трансформаторов. В этом напряжение на неповрежденных фазах по отношению к земле в установившемся режиме не превышает фазное. Коммутационная аппаратура выбирается по большему току к.з.

Источник