6. КАК И ПОЧЕМУ ВОЗНИКАЮТ ВНУТРЕННИЕ НАПРЯЖЕНИЯ ПРИ ЗАКАЛКЕ.
Напряжения 1-го рода. Напряжения 2-го рода. Напряжения 3-го рода.
При закалке возникают внутренние напряжения, которые по величине могут быть настолько большими, что это приводит к трещинам и разрушению стали без всякого дополнительного воздействия. Коробление деталей — это также результат воздействия внутренних напряжений. Различают три рода внутренних напряжений.
Напряжения 1-го рода. Единственная причина возникновения таких напряжений — неравномерность охлаждения деталей при закалке. Как мы уже видели, поверхностные слои металла охлаждаются быстрее, внутренние — медленнее; тонкие части детали охлаждаются быстрее, массивные — медленнее. Почему же это приводит к внутренним напряжениям? Представим себе кольцо, в которое плотно вставлен стержень (рис. 20). Поместим такой стержень с кольцом в печь и разогреем до закалочной температуры. Теперь выгрузим их из печи и начнем холодным водяным душем поливать кольцо. При понижении температуры объем тела, как известно, уменьшается (тело сжимается). Следовательно, и кольцо при охлаждении должно уменьшиться по объему, а значит и по диаметру. Но стержень препятствует этому, так как температура его почти не изменилась, а значит и диаметр остался прежним. В этих условиях кольцо начинает давить на стержень, сжимая его со всех сторон. Поэтому в стержне и возникают сжимающие напряжения. Кольцо же при этом может даже разорваться. Нечто подобное может произойти при насаживании горячей обечайки на бочку. Таким образом, в кольце возникают растягивающие напряжения.
Рис. 20. Возникновение внутренних напряжений при закалке
Аналогичная картина получается при закалке сплошной детали цилиндрической формы (рис. 21).
Рис. 21. Возникновение термических напряжений при закалке цилиндрической детали
Наружная поверхность ее в виде кольцевого слоя охлаждается быстро и уменьшается в объеме. Внутренняя же зона охлаждается замедленно и потому препятствует сжатию наружного кольцевого слоя. В результате внутренняя зона металла окажется сжатой, а наружная — растянутой. В последующий период внутренняя зона, охлаждаясь, уменьшится в объеме и потянет к центру наружный кольцевой слой, стремясь уменьшить его диаметр. Но металл снаружи уже остыл и потому утратил пластичность. Теперь наружная зона играет роль жесткого кольца, которое уже не может уменьшиться по диаметру. Поэтому в заключительный период охлаждения в наружных слоях металла возникнут сжимающие напряжения. Внутренняя же зона металла, будучи связана с наружными слоями, не сможет уменьшиться в объеме, хотя и будет стремиться к этому. В результате в ней возникнут растягивающие внутренние напряжения. Растягивающие напряжения являются более опасными, чем сжимающие. При закалке массивных деталей, когда различие в температуре внутренних и наружных слоев достигает значительной величины, такие напряжения могут вызвать трещины или даже привести к полному разрушению металла, как это, например, бывает при закалке молотовых штампов.
Внутренние напряжения 1-го рода, как теперь уже ясно, вызываются объемными изменениями металла при понижении или повышении температуры, и потому их называют термическими напряжениями.
Напряжения 2-го рода. Такие напряжения вызываются структурными изменениями при закалке. Как уже указывалось, различные структуры стали имеют различный удельный объем: мартенсит — максимальный, аустенит — минимальный, перлит — средний между ними.
Представим себе цилиндрическую деталь из углеродистой стали, которая прокаливается не насквозь. Тогда после закалки в наружном кольцевом слое такой детали будет мартенситная структура, а в центральной части — перлитная. При образовании мартенсита объем стали возрастает, и поэтому наружное мартенситное кольцо будет стремиться увеличиться в диаметре. Но этому препятствует центральная зона, стремясь стянуть кольцо к центру. В результате в наружном мартенситном слое металла возникнут сжимающие напряжения, а в центральной зоне, наоборот,— растягивающие.
Эти напряжения также связаны с изменениями объема металла, но такие изменения в данном случае вызваны структурными превращениями. Поэтому и напряжения называются структурными.
Таким образом, окончательная картина распределения внутренних напряжений весьма сложная и зависит от соотношения термических и структурных напряжений в данном участке детали.
Напряжения 3-го рода. Это напряжения, возникающие в атомной решетке. Мы уже знаем, что в атомной решетке по различным причинам могут возникать искажения с нарушением правильного порядка расположения атомов, например дислокации. Дислокацию можно рассматривать как лишнюю плоскость, вклинившуюся между двумя соседними плоскостями и как бы распирающую атомную решетку в этом месте. Атомы, расположенные в прилегающих к дислокации плоскостях, сдвигаются из своего нормального (равновесного) положения в данной решетке. Стремление этих атомов к упорядоченному расположению и вызывает появление внутренних межатомных напряжений. Мартенситная структура, возникающая в стали после закалки, характеризуется большим числом дислокаций. Кроме того, мартенсит имеет атомную решетку, в которой между атомами железа расположены атомы углерода (см. рис. 9). Это приводит к распиранию решетки, к ее искажению, а следовательно, также вызывает внутренние межатомные напряжения.
Подводя итог всему сказанному, следует ответить на вопрос — всегда ли внутренние напряжения являются опасными и нежелательными? Нет, в ряде случаев они являются полезными и способствуют повышению прочности деталей. Такое благоприятное действие оказывают, например, сжимающие напряжения на поверхности деталей. Поясним это. Представим себе динамометр (силоизмеритель), который растягивают два человека в разные стороны с помощью тросов (рис. 22).
Рис. 22. Схема, поясняющая роль внутренних напряжений
Предположим, что стрелка динамометра показывает при этом растягивающее усилие, равное 50 кгс. Если теперь еще два человека возьмутся за тросы и будут их тянуть к динамометру, прикладывая усилие 30 кгс, то стрелка на нем покажет 20 кгс. Аналогично действуют внутренние сжимающие напряжения, образующиеся в деталях при закалке. Например, если к стержню приложить растягивающие усилия, которые создадут в нем напряжения 40 кгс/мм 2 , и если в этом стержне внутренние сжимающие напряжения, полученные путем закалки, равны 15 кгс/мм 2 , то напряжения, растягивающие в действительности стержень, составят 25 кгс/мм 2 . Таким образом, внутренние напряжения в данном случае как бы разгружают стержень от внешнего напряжения.
Почему же именно у поверхности внутренние сжимающие напряжения оказываются особенно полезными? Во-первых, максимальные напряжения при работе детали возникают почти всегда у поверхности. Во-вторых, наиболее опасными являются растягивающие напряжения, особенно при наличии каких-либо дефектов на поверхности. Это наглядно иллюстрирует следующий пример. Возьмем школьный резиновый ластик для стирания и сделаем на нем с двух сторон небольшие поперечные надрезы. Теперь, сдавливая двумя пальцами с торцовых сторон этот ластик, изогнем его по дуге. Легко можно заметить, что при этом надрез, расположенный на внешней, выгнутой стороне, будет расширяться и углубляться. Это происходит под действием растягивающих напряжений на данной поверхности. Края надреза, расположенного на вогнутой стороне, наоборот,— будут сближаться. Так происходит потому, что на этой поверхности действуют менее опасные сжимающие напряжения. Теперь должно быть понятным, почему во многих случаях для повышения эксплуатационных свойств деталей достаточно произвести поверхностное упрочнение, например, путем закалки ТВЧ или химико-термической обработкой. Как одно, так и другое не только упрочняет поверхность деталей, но создает внутренние сжимающие напряжения.
Источник
ВНУТРЕННИЕ НАПРЯЖЕНИЯ ПРИ ЗАКАЛКЕ
1. Тепловые напряжения.
2. Фазовые напряжения.
3. Изотермическая закалка.
4. Закалочные среды.
При закалке металлов возникают внутренние напряжения. Причины могут быть различными. Неравномерное охлаждение поверхности и сердцевины изделий вызывает напряжения, называемые тепловыми. Из-за изменений объема, а также неоднородности протекания мартенситного превращения по объему изделия возникают напряжения, называемые структурными или фазовыми.
Тепловые напряжения для процесса охлаждения отожженной стали от температуры ниже Ас1 (727 0 С) характерны. Только фазовые напряжения в этом случае отсутствуют.
При быстром охлаждении распределение температур по сечению изделия неодинаково и изменение объема также неравномерно. Поверхностные слои сжимаются быстрее, чем внутренние. Но, этому процессу препятствуют внутренние слои, вследствие чего в поверхностных слоях образуются временные (исчезающие после снятия нагрузки) растягивающие напряжения. Во внутренних слоях одновременно возникают сжимающие напряжения. Даже тогда, когда поверхность охладится и прекратится изменение объема, сердцевина еще будет испытывать тепловое сжатие. Напряжения начнут уменьшаться, и, в какой-либо момент произойдет изменение знака напряжений на поверхности и в сердцевине.
После окончательного охлаждения на поверхности получаются остаточные напряжения сжатия, а в сердцевине – напряжения растяжения (рис. а).
Эпюры остаточных напряжений:
а) тепловые б) структурные в) суммарные
Появление остаточных напряжений – это результат того, что временные напряжения вызывают как упругую, так и пластическую деформацию слоев по сечению.
2. Фазовые и суммарные напряжения.
Рассмотрим условия возникновения фазовых напряжений при полной прокаливаемости (без учета тепловых напряжений).
Когда при закалке достигается температура ниже т. Мн, мартенсит в 1-ую очередь образуется на поверхности, т.к. здесь т. Мн будет достигнута раньше, чем в сердцевине. Известно также, что превращение аустенита в мартенсит сопровождается увеличением объема, поэтому на поверхности возникают временные сживающие напряжения, а во внутренних слоях – растягивающие напряжения. С развитием превращения знак напряжений на поверхности и в сердцевине изменяется.
По сравнению с тепловыми напряжениями структурные изменяются в обратном порядке. В результате мартенситного превращения на поверхности образуются остаточные напряжения растяжения, а в сердцевине – напряжения сжатия (рис. б). Эти остаточные напряжения, как и тепловые, возникают в результате появления под действием временных напряжений не только упругой, но и неодинаковой по сечению остаточной деформации.
При закалке стали возникают как тепловые, так и фазовые напряжения одновременно, поэтому их суммируют (рис. в). В данном случае (согласно приведенной схеме) тепловые напряжения больше структурных, поэтому на поверхности образуются напряжения сжатия.
В зависимости от соотношения между тепловым и структурными напряжениями могут получиться различные эпюры суммарных напряжений. Напряжения в поверхностных слоях могут иметь различный знак и величину. Часто величина фазовых напряжений больше тепловых.
Следует отметить, что остаточные напряжения всегда меньше временных напряжений, образующихся в процессе охлаждения.
Если металл мало пластичен и величина напряжений превышает сопротивление отрыву, то в результате происходит образование трещин. Наиболее опасны при этом растягивающие напряжения на поверхности, способствующие образованию трещин и снижающие предел выносливости стали.
Растягивающие напряжения возникают в основном вследствие структурных напряжений, которые стремятся уменьшить. Структурные напряжения тем больше, чем выше температура закалки и скорость охлаждения в интервале температур Мн и Мк. Чтобы снизить структурные напряжения, замедляют скорость охлаждения ниже т. Мн и избегают перегрева стали.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
19. Закалка сталей. Внутренние напряжения при закалке.
Закалка сталей — это нагрев доэвтектоидных сталей до температуры на 30-50 °С выше линии Ас3 а для заэвтектоидных на 30-50 °С выше линии Ас1, выдержка с последующим быстрым охлаждением со скоростью, препятствующей диффузионному распаду аустенита. Для доэвтектоидных сталей проводят полную закалку (структура — мартенсит), а для заэвтектоидных инструментальных сталей — неполную (структура — мартенсит и цементит).
Цель закалки сталей — получение мартенситной структуры в доэвтектоидных сталях и мартенсита с цементитом в заэвтектоидных сталях. Быстрое охлаждение при закалке обеспечивает переохлаждение аустенита до относительно низких температур без его диффузионного распада. В углеродистых сталях при этом имеет место без-диффузионное фазовое превращение аустенита в мартенсит. Мартенситом называют особый вид структуры, образующийся при фазовом полиморфном превращении без диффузии путем группового сдвига атомов по определенным кристаллографическим плоскостям и направлениям. Мартенсит в сталях, как правило, пересыщен углеродом.
Чтобы аустенит претерпевал при непрерывном охлаждении только без-диффузионное превращение в мартенсит, его необходимо охлаждать со скоростью- большей или равной критической скорости закатки. Критическая скорость закалки — наименьшая скорость охлаждения, при которой происходит превращение аустенита в мартенсит. Мартенсит имеет наибольшую твёрдость, уступая в этом только цементиту. С увеличением содержания углерода в мартенсите твёрдость его возрастает При закалке на мартенсит возникают остаточные напряжения (термические и структурные), которые могут с течением времени привести к изменениям размеров и формы готового изделия и даже его разрушению. Поэтому стали после закалки на мартенсит обязательно подвергают отпуску. При отпуске закалённой стати ее нагревают до температур, не превышающих AC1, с целью формирования структуры, обеспечивающей необходимые эксплуатационные свойства изделия и уменьшения или снятия внутренних закалочных напряжений. При этом мартенсит претерпевает превращения, приводящие к более устойчивому (равновесному) состоянию.
Внутренние напряжения при закалке: 1) термические: связанные с разной скоростью охлаждения поверхности и центра образца; 2) структурные: связ с превращением аустенита в мартенсит при закалке.
20. Закалочные среды. Способы закалки.
Для получения мартенситной структуры необходимо переохладить аустенит до температуры мартенситного превращения, необходимо прибегнуть к очень резкому охлаждению, которое достигается погружением закаливаемых деталей в холодную воду, либо воду с добавками соли или едкого натра. При охлаждении не должна образовываться паровая пленка, препятствующая теплообмену с закалочной средой. Лучшей является стадия пузырькового кипения охлаждающей жидкости. Чем больше температурный интервал этой стадии, тем интенсивнее охлаждает закалочная среда.
Лучше пользоваться добавками едкого натри, так как щелочная среда не вызывает последующей коррозии стальных деталей. Многие легированные стали приобретают мартенситную структуру при охлаждении в холодных или подогретых маслах, а высоколегированные стали закаливаются на мартенсит даже при охлаждении на воздухе.
Охлаждение при закалке наиболее просто осуществляется погружением закаливаемой детали в жидкую среду (воду или масло), имеющую температуру 20 — 25 °С. Однако в некоторых случаях для уменьшения деформации (коробления) деталей или для предотвращения образования трещин условия охлаждения усложняют. Основной источник напряжений — увеличение объема при превращении аустенита в мартенсит.
1) Закалка в двух средах. После нагрева под закалку деталь погружают определенное время в воду, в результате чего достигается быстрое прохождение температурного интервала минимальная устойчивости аустенита, а затем переносят в более мягкую охлаждаюшую среду, обычно в масло.
2) Ступенчатая закалка. При ступенчатой закалке деталь, нагретую до температуры закалки, переносят в жидкую среду, имеющую температуру на 50 — 100 °С выше мартенситной точки закаливаемой стали и выдерживают небольшое время, для выравнивания температуры по сечению, а затем окончательно охлаждают на спокойном воздуху. Но: получение мартенсита возможно только в легированных сталях.
3) Изотермическая закалка. Если не удается получить достаточной прочности и вязкости, тогда применяют изотермическую закалку на бейнит, обладающий высокой вязкостью и прочностью. Нагретую деталь переносят в ванну расплавленными солями, имеющую температуру на 50-100 °С выше мартенситной точки, выдерживают при этой температуре до завершения превращения аустенита в бейнит и затем охлаждают на воздухе. Применима только к сталям с достаточной устойчивостью переохлажденного аустенита;
4) Обработка холодом — охлаждение закаленных деталей до t 8 / 23 8 9 10 11 12 13 14 15 16 17 18 > Следующая > >>
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник