Меню

Вольт амперная характеристика источников напряжения с внутренним сопротивлением

Реальные источники электрической энергии

date image2015-05-13
views image4487

facebook icon vkontakte icon twitter icon odnoklasniki icon

Отличием реальных источников энергии от идеальных является прежде всего наличие в них внутреннего сопротивления, обусловленного их конструкцией и физическими процессами, происходящими в них.

Внутреннее сопротивление реального активного элемента Rвн ограничивает мощность, отдаваемую источником в электрическую цепь. В связи с этим реальный источник энергии может быть представлен как модель, образованная из идеального источника энергии и идеального резистора (сопротивления), т.е. в виде последовательной или параллельной схем замещения, соответственно с идеализированным источником напряжения (рис. 1.17,а) или идеализированным источником тока

Рис. 1.17. Реальные источники напряжения и тока:

а – последовательная схема замещения:

б – параллельная схема замещения.

В параллельной схеме замещения (рис. 1.17,б) для того, что бы напряжение на ее выходных зажимах было равно u(t), необходимо выбирать величину i(t)=e(t)/Rвн.

На рис. 1.18 представлен реальный источник напряжения в виде последовательной схемы замещения с идеальным источником напряжения c внутренним сопротивлением и подключенной к зажимам источника сопротивления нагрузки RН, на котором возникает напряжение .

Рис. 1.18. Условное графическое изображение реального источника напряжения с нагрузкой RН

Основной характеристикой модели реального источника напряжения является его вольт-амперная характеристика (ВАХ), т.е. зависимость тока через источник от напряжения на его зажимах, которая является функцией изменения сопротивления нагрузки . На рис. 1.19 показана ВАХ реального источника постоянного напряжения.

Рис. 1.19. ВАХ реального источника напряжения

ВАХ реального источника напряжения (рис. 1.19) представляет собой прямую линию, у которой точка 1 с координатами (0, ) получается при , когда , а точка 2 с координатами (0, ) образуется при , когда . Пунктирной линией на рис. 1.19 показана вольт-амперная характеристика идеального источника напряжения с внутренним сопротивлением = =0.

При расчетах схем, при необходимости, осуществляют эквивалентный переход от последовательной схемы замещения источника энергии к параллельной и наоборот, что позволяет упростить расчеты электрических цепей. Так, например, если при последовательном соединении двух источников энергии общее напряжение равно сумме их напряжений, и также суммируются величины их внутренних сопротивлений, то при параллельном соединении двух источников, для определения результирующего напряжения, необходимо осуществить соответствующие расчеты. Их можно произвести на основе вышеупомянутых схем замещения реальных источников энергии.

На рис. 1.20 представлена схема параллельного соединения двух реальных источников энергии постоянного напряжения и пусть требуется определить напряжение на зажимах их соединения.

Рис. 1.20. Схема параллельного соединения источников напряжения

Для определения напряжения Е1,2 осуществим эквивалентный переход от последовательной схемы замещения источников энергии к параллельной (рис. 1.21).

Рис. 1.21. Схема соединения источников в виде параллельной схемы их замещения

Дальнейшее преобразование цепи (рис. 1.21) приводит к схеме, показанной на рис. 1.22.

Рис. 1.22. Преобразование в схеме соединения источников энергии по рис. 1.21

Тогда, с учетом преобразований (рис. 1.22) напряжение на эквивалентном сопротивлении Rэкв можно определить как

Полученная формула (1.22) показывает, что при параллельном соединении источников их общее напряжение определяется как величина, зависящая не только от их напряжений, а и от их внутренних сопротивлений.

Так, если у источников энергии (рис.1.22) R1=R2=R, то формула (1.22) упрощается и будет иметь вид

На практике схему замещения (последовательную или параллельную) выбирают исходя из технических характеристик источника энергии, и прежде всего величины его внутреннего сопротивления. Так, мощный автомобильный аккумулятор с очень маленьким внутренним сопротивлением приближается к последовательной схеме замещения с идеальным источником напряжения и сопротивлением Rвн. Источник питания переносных радиоприемников (батарейку) с большим внутренним сопротивлением лучше всего представить в виде параллельной схемы замещения с источником тока. При необходимости, на практике реальный источник тока получают из реального источника напряжения с малым внутренним сопротивлением Rе, подключая последовательно к зажимам источника большое сопротивление Rвн (рис. 1.23).

Читайте также:  Что считается опасным напряжением

Рис. 1.23. Схема реального источника тока

Если в схеме (рис. 1.23) соблюдается условие, что Rвн>>Rн,

то при изменении Rн от нуля до некоторого значения ток i(t) в электрической цепи будет изменяться в небольших пределах и не будет зависеть от напряжения uRн (t) на зажимах Rн.

Источник



Основы электротехники и электроники: Курс лекций , страница 2

Величина, обратная сопротивлению, называется проводимостью (обозначается буквой g, имеет размерность Ом – 1 или См, Сименс).

В линейных цепях сопротивление ветвей постоянно, определяется лишь физическими свойствами материала проводников и не зависит от источников, токов и напряжений в ветвях.

Если источники в цепи создают на своих выводах напряжения и токи, которые не изменяются во времени, цепь называется электрической цепью постоянного тока. В цепи постоянного тока сопротивление индуктивностей равно нулю, сопротивление конденсаторов бесконечно велико.

Далее будут рассмотрены линейные цепи постоянного тока.

2. ИСТОЧНИКИ ЭДС И ИСТОЧНИКИ ТОКА

ЭДС – это максимальное напряжение, которое могут создать сторонние силы на выводах источника при отсутствии в цепи тока. В качестве сторонних сил могут выступать, например, химические реакции в гальванической батарее или момент на валу электрической машины, работающей в режиме генератора.

Для удобства анализа источники электрической энергии представляют либо с помощью идеального источника ЭДС, либо с помощью идеального источника тока. Идеальный источник ЭДС и идеальный источник тока называют также источниками бесконечно большой мощности.

На Рис. 2.1 а показана вольт-амперная характеристика идеального источника ЭДС. Этот источник отличается тем, что напряжение на его выводах равно значению ЭДС независимо от тока нагрузки. На Рис. 2.1 б показана вольт-амперная характеристика идеального источника тока. Он сохраняет постоянство тока вне зависимости от напряжения на своих выводах.

Рис. 2.1

Если к данным вольт-амперным характеристикам применить закон Ома (см. формулу (1.1))

можно сделать вывод, что сопротивление идеального источника ЭДС равно нулю, а сопротивление идеального источника тока равно бесконечности.

Реальный источник электрической энергии обладает конечным внутренним сопротивлением, его вольт-амперная характеристика показана на Рис. 2.2 и может быть описана выражением:

где – внутреннее сопротивление источника;

– напряжение холостого хода источника.

Когда источник отключен от нагрузки, на его зажимах существует напряжение холостого хода , равное ЭДС источника. Если соединить накоротко зажимы источника, напряжение на зажимах будет равно нулю, а ток между зажимами будет равен току короткого замыкания .

Сравнивая вольт-амперные характеристики идеальных источников и реального источника, можно заключить, что реальный источник можно смоделировать либо с помощью эквивалентного идеального источника ЭДС и последовательно включенного внутреннего сопротивления, либо с помощью эквивалентного идеального источника тока и параллельно включенного внутреннего сопротивления (Рис. 2.3).

Читайте также:  Сигнализатор напряжения индивидуальный испытания

Внутреннее сопротивление реального источника вычисляется как

ЭДС эквивалентного источника ЭДС равна напряжению холостого хода реального источника.

Ток эквивалентного источника тока равен току короткого замыкания реального источника.

ЭДС эквивалентного источника ЭДС и ток эквивалентного источника тока связаны соотношением:

Это соотношение говорит о том, что любой источник ЭДС с последовательно включенным сопротивлением может быть заменен источником тока с параллельно включенным таким же сопротивлением и наоборот.

Какой из двух эквивалентных замен воспользоваться, совершенно безразлично, и определяется лишь удобством расчета в каждом конкретном случае.

Заметим, что ЭДС идеального источника ЭДС всегда направлена от меньшего потенциала к большему, а ток идеального источника тока всегда направлен в ту же сторону, что и ток реального источника.

3. ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ЭЛЕМЕНТОВ ЦЕПИ

Для упрощения расчетов электрическую цепь можно преобразовывать, уменьшая количество ветвей и узлов. При этом необходимо помнить, что после расчета преобразованной цепи следует выполнить обратное преобразование, чтобы вернуться к исходной цепи.

Любые преобразования цепей должны быть эквивалентными, то есть преобразование какого-либо участка цепи не должно изменять токораспределения в непреобразованной части схемы. А это возможно лишь тогда, когда в процессе преобразования потенциалы узлов в непреобразованной части схемы и токи, подтекающие извне к преобразованному участку, сохраняются неизменными.

Простейшими преобразованиями электрической цепи являются свертки последовательно-параллельных соединений элементов цепи.

При последовательном соединении элементов конец предыдущего соединяется с началом последующего (Рис. 3.1). Главный признак последовательного соединения – один и тот же ток в каждом из элементов.

Если к последовательному соединению элементов применить закон Ома (1.1), можно заключить, что напряжения на элементах распределяются прямо пропорционально сопротивлениям, а общее сопротивление последовательного соединения равно сумме сопротивлений элементов:

Итак, если на участке цепи несколько элементов соединены последовательно, они могут быть заменены одним эквивалентным элементом, сопротивление которого равно сумме сопротивлений отдельных элементов. ПРИ ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ СОПРОТИВЛЕНИЯ СКЛАДЫВАЮТСЯ!

При параллельном соединении элементов начала всех элементов соединены в один узел, а концы всех элементов соединены в другой узел (Рис. 3.2).

Главный признак параллельного соединения – одно и то же напряжение на каждом из элементов.

Если на участке цепи несколько элементов соединены параллельно, они могут быть заменены одним эквивалентным элементом, проводимость которого равна сумме проводимостей отдельных элементов. ПРИ ПАРАЛЛЕЛЬНОМ СОЕДИНЕНИИ СКЛАДЫВАЮТСЯ ПРОВОДИ­МОСТИ!

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Регулятор напряжения генератора зил бычок

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

ВОЛЬТ-АМПЕ́РНАЯ ХАРАКТЕРИ́СТИКА

В книжной версии

Том 5. Москва, 2006, стр. 687

Скопировать библиографическую ссылку:

ВОЛЬТ-АМПЕ́РНАЯ ХАРАКТЕРИ́СТИКА (ВАХ), за­ви­си­мость си­лы элек­трич. то­ка $I$ от при­ло­жен­но­го к дан­но­му эле­мен­ту на­пря­же­ния $U$ или за­ви­си­мость па­дения на­пря­же­ния на дан­ном эле­мен­те от си­лы про­те­каю­ще­го че­рез не­го то­ка. Про­стей­шая ВАХ иде­аль­но­го про­вод­ника, имею­ще­го элек­трич. со­про­тив­ле­ние $R$ , не за­ви­ся­щее от си­лы то­ка, оп­ре­де­ля­ет­ся Ома за­ко­ном , $U=RI$ , и пред­став­ля­ет со­бой пря­мую ли­нию, про­хо­дящую че­рез на­ча­ло ко­ор­ди­нат. По­сколь­ку со­про­тив­ле­ние ре­аль­ных про­во­дя­щих сред ме­ня­ет­ся при из­ме­не­нии ус­ло­вий, их ВАХ, как пра­ви­ло, не­ли­ней­на. Напр., ВАХ элек­трич. раз­ря­да в га­зе (или жид­ко­сти) за­ви­сит от дав­ле­ния и ро­да га­за, раз­ме­ров уст­рой­ст­ва, ти­па при­ло­жен­но­го на­пря­же­ния (по­сто­ян­ное или пе­ре­мен­ное), на­ли­чия маг­нит­но­го по­ля и т. д. На ВАХ ши­ро­ко ис­поль­зуе­мо­го на прак­ти­ке тлею­ще­го раз­ря­да име­ет­ся па­даю­щий уча­сток при ма­лой си­ле то­ка, по­сто­ян­ный уча­сток ( $U=const$ ) для нор­маль­но­го раз­ря­да при про­ме­жу­точ­ных $I$ и уча­сток, рас­ту­щий при боль­шой си­ле то­ка (ано­маль­ный раз­ряд). В од­нород­ных по­лу­про­вод­ни­ках вслед­ст­вие за­ви­си­мо­сти под­виж­но­сти но­си­те­лей за­ря­да от при­ло­жен­но­го по­ля ВАХ мо­жет быть не­од­но­знач­ной – т. н. ВАХ $N$ -об­раз­но­го (рис.) и $S$ -об­раз­но­го ти­пов. В не­од­но­род­ных по­лу­про­вод­ни­ках ВАХ силь­но не­сим­мет­рич­на, что ис­поль­зу­ет­ся для вы­прям­ле­ния пе­ре­мен­но­го то­ка.

Источник