Меню

Вольтметр показывает линейное напряжение

Вольтметр-измеряем напряжение. Назначение, принцип работы, типы.

Вольтметр 1

Вольтметр – это прибор, назначение которого измерять электродвижущую силу (ЕДС) на определенном участке электрической цепи, или проще – прибор для измерениянапряжения (разность электрических потенциалов). Этот прибор всегда подключается параллельно элементу питания или нагрузке. Измеренное значение вольтметр показывает в Вольтах.

Если говорить об идеальном вольтметре, то он должен обладать бесконечным внутренним сопротивлением, чтобы точно измерять напряжение и не оказывать побочного воздействия на цепь. Именно поэтому в приборах высокого класса стараются сделать максимально возможным внутреннее сопротивление, от которого зависит точность измерения и помехи, создаваемые вольтметром в электрической цепи.

вольтметр-7

Рисунок — Формулы измерения напряжения

Если говорить о способе монтажа, то вольтметры подразделяют на три основные группы:

вольтметр 6

Как становится ясно из названия, стационарные приборы используются там, где необходим постоянный контроль, щитовые – в распределительных щитках и на приборных панелях, а переносные – в компактных приборах, которые можно использовать в любом месте.

Рисунок — Схема подключения вольтметра

Посмотрите видео о подключении вольтметра:

  1. По назначению все вольтметры делятся
  2. Рассмотрим несколько вольтметров разных производителей
  3. 1. В3-57 — микровольтметр
  4. 2.Вольтметры переменного напряжения АКИП-2401
  5. 3. Вольтметр В7-40/1

По назначению все вольтметры делятся

Вольтметры переменного тока, как и постоянного используются для измерений в сетях с соответствующим типом тока, а вот селективные – могут отделять гармоническую составляющую сложного сигнала, и определять среднеквадратическое значение напряжения.

Импульсный вольтметр обычно используют для измерений амплитуды постоянных импульсных сигналов, а также они способны точно определить амплитуду одиночного импульса.

Фазочувствительные приборы могут измерять изменения составляющих комплексных напряжений, благодаря чему становится возможным точное исследование амплитудно-фазовой характеристики усилителей, и прочих подобных схем.

По принципу действия различают электронные (цифровые или аналоговые), и электромеханические вольтметры (электромагнитные, термоэлектрические, а также магнитоэлектрические, электродинамические и электростатические).

Все электромеханические приборы, за исключением термоэлектрических, по сути, являются обычным измерительным механизмом с показывающим устройством. Во всех них для расширения пределов измерений применяются дополнительные сопротивления.

Приборы данной категории, не смотря на довольно высокое внутреннее сопротивление, имеют относительно большую погрешность, что делает невозможным их использование в ходе экспериментов и исследований, где требуется повышенная точность данных.

Термоэлектрический вольтметр использует для замеров электродвижущую силу одной или нескольких термопар, которые греются из-за тока входящего сигнала. Они более точны и компактны, в сравнении с электромеханическими измерителями напряжения.

Электронные вольтметры в свою очередь подразделяются на цифровые и аналоговые.

Цифровой вольтметр преобразует постоянное значение напряжения в цифровой сигнал, который и выводится на табло прибора. Делается это при помощи аналого-цифрового преобразователя.

В аналоговых вольтметрах помимо магнитоэлектрического измерителя и дополнительных резисторов в обязательном порядке присутствует измерительный усилитель, позволяющий в несколько раз повысить внутреннее сопротивление прибора, и соответственно – улучшить точность показаний.

Рассмотрим несколько вольтметров разных производителей

Вольтметр 21. В3-57 — микровольтметр

Измерительное устройство модели В3-57 — вольтметр-преобразователь среднеквадратич. показаний. Разработан для замеров среднеквадратич. значения напряжений произвольной формы и их линейного преобразован. в напряжение постоян. тока. Шкала прибора промаркирована в среднеквадратич. значениях напряжения и децибелах (от 0 дБ и до 0,775 В). Используется при контроле и наладке разнообразных радиотелетехнических устройств и средств связи, вычислении частотных характеристик широкополосных аппаратов, обследованиях шумовых устойчивых сигналов и т. д.

— Пределы замеров напряжений 10 мкВ — 300 В с граничными зонами: 0,03-0,1-0,3-1-3-10-30-100-300мВ 1-3-10-30-100-300В

— Границы частот 5 Гц — 5 МГц

— Допустимая погрешность, %: ±1 (30-300 мВ), ±1,5 (1-10 мВ), ±2,5 (0,1-0,3 мВ и 1-300 В), ±4 (0,03 мВ)

— Входное сопротивл.5 МОм ±20%

— Входная емкость: 27пФ (0,03-300 мВ) и 12 пФ (1-300 В)

— Напряжение на выходе линейного преобразоват. 1 В

— Сопротивление на выходе линейного преобразоват. 1 кОм ±10%

— Предельный коэфф. амплитуды сигнала 6*(Uk/Ux)

Вольтметр 3

2.Вольтметры переменного напряжения АКИП-2401

— Измерение ср.квадратического значения переменного напряжения

— Диапазон частот: 5 Гц…5 МГц

— Диапазон измерения напряжения: 50 мкВ…300 В (6 пределов)

— Два измерительных ВЧ входа: Кан1 / Кан2

— Максимальное разрешение: 0,0001 мВ

— Отображение уровня входного сигнала в дБн, дБм, Uпик

Читайте также:  Знак осторожно электрическое напряжение желтый фон

— Автоматический или ручной выбор пределов измерений, удержание результата (Hold)

Вольтметр 43. Вольтметр В7-40/1

Высококачественный цифровой универсальный прибор, предназначенный для измерения постоянного и переменного напряжений, силы токов и сопротивления постоянному току. вольтметр В7-40/1 применяется при производстве радиоаппаратуры и электрорадиоэлементов, при научных и экспериментальных исследованиях, в лабораторных и цеховых условиях. Встроенный в вольтметр В7-40/1 интерфейс IEEE 488 позволяет успешно использовать его в составе автоматизированных информационно — измерительных систем.

Вольтметр В7-40/1 соответствует жестким условия эксплуатации.

— Точность измерения по постоянному току вольтметра В7-40/1 — 0,05 %

— Максимальная разрешающая способность В7-40/1 — 1 мкВ; 10 мкА; 1 мОм

— Диапазоны 0,2; 20; 200; 1000 (2000) В

— Разрешение 1, 10, 100 мкВ; 1; 10 мВ

— Основная погрешность измерения ±(0,04 %+ 5 ед. мл. р)

— на диапазоне 0,2 В не менее 1 ГОм

— на диапазоне 2 В не менее 2 ГОм

— на диапазонах 200….1000 В, не менее 10 МОм

Ещё одно видео о способе подключения вольтметра:

Источник



Раздел 3. Трёхфазные цепи.

Высшие гармоники в трёхфазных цепях.

Задача 3.1. Как изменяются фазовые токи симметричной звезды без

нейтрали, если фазу А закоротить?

(1 – линейный ток при симметричной нагрузке).

При коротком замыкании фазы А,

напряжения и увеличатся

в раз. Следовательно и токи

в фазах B и C возрастут в раз.

Задача 3.2. Как изменятся фазовые токи симметричной звезды с нулевым проводом при обрыве фазы А ?

(1 – линейный ток при симметричной нагрузке).

При обрыве фазы А цепь из 3-х фазной превращается в однофазную с напряжением .

Задача 3.3. Определить ток в проводе A при

перегорании предохранителя в проводе С, если известны линейное напряжение U и сопротивление Z.

(см. решение задачи 3.2.)

Задача 3.4. Что покажет электромагнитный вольтметр, если линейное напряжение сети равно ?

Решение:

Из векторной диаграммы:

Отсюда показание вольтметра:

Задача 3.5. Определить при обрыве фазы , если В.

Из векторной диаграммы:

Задача 3.6. Определить показание электромагнитного амперметра, если все сопротивления одинаковы и равны 20 Ом, В.

Т.к. все сопротивления одинаковы, то потенциалы нулевых точек двух приемников одинаковы. Поэтому их можно заменить одним приемником с сопротивлением Ом.

Задача 3.7. Определить показание электромагнитного амперметра, если Ом, Ом, Ом, В.

; ;

Из векторной диаграммы показание амперметра:

Задача 3.8. Ток закороченной фазы С приемника равен нулю, Ом.

Определить .

Из векторной диаграммы

Задача 3.9. Три потребителя с одинаковыми сопротивлениями R соединены треугольником и включены в 3-х фазную сеть. Как изменятся линейные токи, если потребители соединены звездой?

В схеме треугольника потребители находились под линейным напряжением и токи в них были . В схеме звезды потребители находятся под

напряжением , следовательно, токи в них уменьшаются в раз и станут равными , где — прежнее значение линейного тока. В схеме , следовательно:

Задача 3.10. Фазные токи симметричного трехфазного потребителя, соединенного в треугольник равны 15 А. Каким станет ток после перегорания предохранителя в проводе А.

До перегорания предохранителя ток был равен

После перегорания предохранителя:

Задача 3.11. Как изменятся токи цепи после размыкания ключа?

Решение :

При обрыве фазы потребителя, соединенного

треугольником, ток в цепи становится равным

нулю, а в остальных фазах не меняется.

Задача 3.12. Два симметричных потребителя (один по схеме звезда, другой — треугольник) подключены к сети с линейным напряжением .

Определить , если сопротивления фаз потребителей одинаковы и равны .

Задача 3.13. Симметричный трехфазный потребитель, соединенный в треугольник, имеет сопротивление фазы Ом. Определить другого симметричного потребителя, соединенного в звезду и подключенного к той же сети, если их линейные токи одинаковы.

Отсюда: ; Ом

Задача 3.14. Определить показание

электромагнитного вольтметра, если В.

Из векторной диаграммы показание вольтметра равно:

Задача 3.15. Определить симметричного потребителя,

соединенного звездой, если В, А и потребляемая мощность кВт.

Задача 3.16. Как изменятся показания ваттметров после замыкания

ключа?

При замыкании ключа напряжения и ток не изменяются, а ток увеличится. (см. задачу 5.11)

Читайте также:  Пальпация живота симптом напряжения мышц

Таким образом — увеличится

Задача 3.17. Вольтметр и амперметр показывают соответственно В и А. Определить

Решение:

На основании схемы включение ваттметра его показание равно:

Задача 3.18. Для симметричного трехфазного потребителя заданы:

В, А, Вт. Определить угол сдвига фаз между фазными током и напряжением.

Задача 3 .19. Определить симметричного 3-х фазного приемника, если показания ваттметров равны: Вт, Вт

На основании схемы включения ваттметров и векторной

Как следует из (1)

Задача 3.20. Определить показание электромагнитного вольтметра, если

.

Вольтметр покажет действующее значение фазной ЭДС : В

Задача 3.21. Определить показание электромагнитного вольтметра, если

Вольтметр показывает действующее значение линейной ЭДС

Задача 3.22. Определить показание электромагнитного амперметра, если

В

сопротивление каждой обмотки чисто реактивное и равно Ом

Амперметр показывает действующее значение тока 3-ей гармоники (т.к. сумма ЭДС 1-ой гармоники в контуре равна нулю)

Задача 3.23. Определить показание

электромагнитного вольтметра, если

Вольтметр показывает действующее значение фазного напряжения, равного при симметричной нагрузке фазной ЭДС без учёта гармоник кратных трём

Задача 3.24. Определить показание электромагнитного вольтметра, если

В

Показание вольтметра равно:

Задача 3.25. Определить показание электромагнитного вольтметра, если

В,

Вольтметр покажет действующее значение напряжения гармоник, кратных трём В

Задача 3 .26. Определить трёхфазного генератора, соединённого звездой, если напряжение на фазе А

В линейном напряжении третья гармоника отсутствует.

Первые гармоники фаз A и B сдвинуты по фазе на . первой гармоники на будет опережать первой гармоники и в будет больше его.

Одиннадцатая гармоника (обратная последовательность фаз) напряжения будет отставать от одиннадцатой гармоники фазы А на и в будет больше её:

Источник

Что такое фазное и линейное напряжение?

Уровень напряжения является потенциальной характеристикой качества снабжения электрической энергией потребителей. Приборы длительно эксплуатируются при условии работы в допустимом диапазоне мощности сети. Для определения параметров функционирования и подключения различают фазное и линейное напряжение в трехфазных цепях. На выходе от производителя напряжение изменяется для транспортировки, а после обратных преобразовательных этапов приобретает значение, применяемые потребителями.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции. Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы. Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Что такое фазное и линейное напряжение?

Цепь представляет собой стандартные элементы — энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю. Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод — нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды. Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Читайте также:  Воздушные линии электропередачи низкого напряжения

Что такое фазное и линейное напряжение?

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством. Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора. Это позволяет запитать сразу 3 пользователей.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220 В).

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт. В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники. Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети — это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод. Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе. Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток — нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 — коричневый;
  • провод L2 — черный;
  • кабель L3 — серый;
  • нулевая оплетка N — синий;
  • желтый или зеленый — предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям — целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль. При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции. Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Что такое линейное напряжение?

В трехфазной магистрали можно выделить дополнительное напряжение, при подсоединении перемычку между 2 нагруженными кабелями. Значение его выше, т. к. является проекцией на плоскость координат 2 векторов, составляющих угол 120° между собой. Довесок к значению фазового напряжения составляет 73% или рассчитывается как √3-1. Общепринятое линейное напряжение в электролинии всегда составляет 380 вольт.

Линейное напряжение — это напряжение между двумя фазными проводами (380 В).

Напряжение вычисляется в промежутке фаз или между их выводами. При монтаже схемы появляются трудности, заключающиеся в неточности при расчете проводника, что иногда вызывает аварию. Схемы подключения различаются вариантами объединения нагруженных жил и источника электричества. Преимущества однофазной сети:

  • безопасность эксплуатации оборудования, т. к. опасность в плане поражения исходит от 1 кабеля;
  • схема применяется для осуществления эффективной разводки, выбора принципа эксплуатации, расчета параметров и выполнения измерений.

Расчеты в системе простые, выполняются с учетом стандартных физических формул. Для замеров показателей цепи используется мультиметр. Характеристики подключения к фазе определяются с помощью специальных вольтметров, токовых датчиков.

Линейное напряжение возникает при прохождении электрического тока в подводнике при объединении источника энергии и приемника. При понижении мощности на участке между выходом генератора и потребителем параметры фазного вольтажа также изменяются. Зная линейные показатели, нетрудно высчитать значение фазного напряжения.

Источник