Меню

Возникает ли индукционный ток в катушке из витков проволоки

Электромагнитная индукция. Опыты Фарадея. Электромагнитные колебания и волны

1. Явление электромагнитной индукции было открыто английским ученым Майклом Фарадеем. Если соединить катушку с гальванометром и внести в катушку полосовой магнит северным полюсом, то стрелка гальванометра отклонится, что свидетельствует о существовании в катушке электрического тока. Когда магнит остановится в катушке, то ток прекратится (рис. 95). При выдвижении магнита из катушки в ней вновь появится электрический ток, но он будет иметь противоположное направление. Причиной возникновения электрического тока в катушке, является изменение магнитного поля, пронизывающего эту катушку, которое происходит при движении магнита.

Возможны различные способы изменения магнитного поля, пронизывающего контур проводника. Можно, например, перемещать не магнит, а катушку, т.е. надевать её на магнит. При этом также возникнет индукционный ток. Можно в большую катушку вставить малую катушку. Большую катушку соединить с гальванометром, а малую — с источником постоянного тока. При замыкании и размыкании цепи малой катушки можно наблюдать отклонение стрелки гальванометра. Таким образом, при любом изменении магнитного поля пронизывающего замкнутый проводник, в нём возникает индукционный ток.

Эти и другие опыты показывают, что ток появляется только при изменении магнитного поля, пронизывающего замкнутый проводник.

Явление возникновения тока в замкнутом проводнике при изменении магнитного поля, пронизывающего контур проводника, называется электромагнитной индукцией. Ток, возникающий в этом случае в цепи, называют индукционным током.

Таким образом, направление индукционного тока в катушке зависит от направления движения магнита.

2. Направление индукционного тока зависит от того, каким полюсом вносят магнит в катушку или выносят из нее, т.е. от направления магнитного поля. Если вносить магнит в катушку не северным полюсом, как это делалось в опыте, описанном выше, а южным полюсом, то стрелка гальванометра отклонится в сторону, противоположную той, в которую она отклонялась при внесении магнита северным полюсом. Направление индукционного тока будет разным в зависимости от того, вносят магнит в катушку или выносят его из катушки. Таким образом, направление индукционного тока зависит от направления движения магнита относительно катушки.

Вносить магнит в катушку можно быстрее и медленнее. Наблюдения позволяют сделать вывод о том, что сила индукционного тока зависит от скорости движения магнита, т.е. от скорости изменения магнитного поля. Сила индукционного тока тем больше, чем больше скорость изменения магнитного поля, пронизывающего контур проводника.

Если в самом проводнике изменяется сила тока, то вокруг проводника существует переменное магнитное поле. Это поле порождает в проводнике индукционный ток, который называется током самоиндукции, а явление возникновения такого тока — явлением самоиндукции.

Значение открытия явления магнитной индукции заключается в том, что в этом явлении наглядно наблюдается связь электрических и магнитных явлений, электрического и магнитного полей, что позволяет говорить о существовании единого электромагнитного поля.

3. Явление электромагнитной индукции лежит в основе работы генератора электрического тока — устройства, которое служит источником электрического тока и в котором происходит преобразование механической энергии в электрическую. Основными частями генератора являются магнит и расположенная между его полюсами насаженная на вал рамка.

Рамка приводится во вращение, пронизывающее её магнитное поле изменяется, и в катушке возникает индукционный ток. Этот ток снимается с рамки с помощью устройства, называемого коллектором, представляющим собой два полукольца, каждое из которых присоединяется к различным концам рамки, и щёток, касающихся колец. Промышленные генераторы имеют более сложное устройство, но все они состоят из вращающейся части (ротора), обычно в промышленном генераторе это электромагнит, создающий вращающееся магнитное поле, и неподвижной части (статора) — обмотки, в которой индуцируется электрический ток.

4. Максвеллом было теоретически показано, а Герцем экспериментально доказано, что изменяющееся магнитное поле порождает переменное электрическое поле, в свою очередь переменное электрическое поле порождает переменное магнитное поле, т.е. в пространстве происходят изменения (колебания) характеристик электромагнитного поля.

Электромагнитные колебания происходят в колебательной системе, называемой колебательным контуром. Колебательный контур — это электрическая цепь, состоящая из конденсатора и катушки индуктивности (рис. 96).

Если зарядить конденсатор и затем замкнуть его на катушку, то по цепи пойдёт электрический ток. При этом конденсатор начнёт разряжаться. Сначала сила тока в цепи будет увеличиваться, и появится ток самоиндукции, препятствующий увеличению основного тока и направленный против него. Через ½ часть периода конденсатор полностью разрядится, а сила тока в катушке станет максимальной. Затем сила тока начнет уменьшаться. Ток самоиндукции, который при этом возникнет, будет стремиться поддержать основной ток и будет направлен так же, как и он. Через ¼ часть периода ток прекратится, и конденсатор перезарядится. Затем пойдет обратный процесс.

Таким образом, в колебательном контуре происходят электромагнитные колебания, т.е. периодические изменения заряда, силы тока, электрического и магнитного полей. Колебания, происходящие в колебательном контуре, благодаря начальному запасу энергии в конденсаторе называются свободными. В процессе колебаний энергия извне в контур не поступает.

Минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется, называется периодом ​ \( (T) \) ​ электромагнитных колебаний. За период колебаний заряд на обкладках конденсатора изменяется от максимального значения до следующего максимального значения того же знака, или сила тока изменяется от максимального значения до следующего максимального значения при том же направлении тока.

Характеризуя электромагнитные колебания, часто говорят об их частоте. Частотой ​ \( (\nu) \) ​ колебаний называют число полных колебаний в одну секунду. Частота обратна периоду колебаний

Единицей частоты является 1 Гц. Частоту электромагнитных колебаний часто измеряют в килогерцах (1 кГц = 1000 Гц) и в мегагерцах (1 МГц = 1 000 000 Гц).

5. Подобно тому как механические колебания распространяются в пространстве в виде механических волн, электромагнитные колебания распространяются в пространстве в виде электромагнитных волн. Многочисленные эксперименты показывают, что электрическое и магнитное поля взаимосвязаны. Если в какой-либо точке пространства возникает переменное электрическое поле, то в соседних точках оно возбуждает переменное магнитное поле, которое, в свою очередь, возбуждает переменное электрическое поле и т.д. Таким образом, можно говорить об электромагнитном поле. Это поле и распространяется в пространстве.

Процесс распространения периодически изменяющегося электромагнитного ноля представляет собой электромагнитные волны.

Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. Они характеризуются определённой длиной волны ​ \( \lambda \) ​. Длина волны — это расстояние, на которое перемещается электромагнитная волна за время, равное периоду колебаний ​ \( (T) \) ​. ​ \( \lambda=cT \) ​ или \( \lambda=c/\nu \) , где ​ \( c \) ​ — скорость распространения электромагнитной волны, ​ \( \nu \) ​ — частота колебаний.

6. Электрически заряженные частицы могут колебаться с различной частотой. Соответственно, излучаемые при этом электромагнитные волны имеют разную длину волны. Поэтому диапазон частот электромагнитных волн очень широк: он лежит в пределах от 0 до 10 22 Гц, а длина волны — в пределах от 10 -14 м до бесконечности. По длине волны или по частоте электромагнитные волны можно разделить на восемь диапазонов. Обладая рядом общих свойств (интерференция, дифракция), волны разной частоты имеют и специфические свойства.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита.
Б. От того, каким полюсом вносят магнит в катушку.

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

Читайте также:  Почему пылесос бьется током что делать

1) только в катушке А
2) только в катушке Б
3) в обеих катушках
4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

1) возникает только в эбонитовом кольце
2) возникает только в медном кольце
3) возникает в обоих кольцах
4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток.
Б. Малую катушку вынимают из большой.

1) только в опыте А
2) только в опыте Б
3) в обоих опытах
4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с
2) 1 с-2 с и 3 с-4 с
3) 0-1 с и 2 с-3 с
4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени
2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с
3) индукционный ток не возникнет ни в какой промежуток времени
4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды.
Б. Радиоволны.
B. Световые волны.

Укажите правильный ответ.

1) только А
2) только Б
3) только В
4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

1) только А
2) только Б
3) А и В
4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) опыты Фарадея
Б) опыт Эрстеда
B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ
1) действие проводника с током на магнитную стрелку
2) электромагнитная индукция
3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА
A) генератор электрического тока
Б) электрический двигатель
B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) взаимодействие постоянных магнитов
2) взаимодействие проводников с током
3) возникновение электрического тока в проводнике при его движении в магнитном поле
4) магнитное действие проводника с током
5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц
2) 106,2 МГц
3) 847,5 кГц
4) 847,5 МГц

Источник

От чего зависит индукционный ток?

Введение

Се­го­дняш­ний урок будет по­свя­щен яв­ле­нию элек­тро­маг­нит­ной ин­дук­ции. Яв­ле­ни­ем элек­тро­маг­нит­ной ин­дук­ции на­зы­ва­ет­ся яв­ле­ние воз­ник­но­ве­ния элек­три­че­ско­го тока в про­вод­ни­ке под дей­стви­ем пе­ре­мен­но­го маг­нит­но­го поля.

Важно, что в дан­ном слу­чае про­вод­ник дол­жен быть за­мкнут. В на­ча­ле XIX в. после опы­тов дат­ско­го уче­но­го Эр­сте­да стало ясно, что элек­три­че­ский ток со­зда­ет во­круг себя маг­нит­ное поле. После встал во­прос о том, нель­зя ли по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля, т.е. про­из­ве­сти об­рат­ные дей­ствия. Если элек­три­че­ский ток со­зда­ет маг­нит­ное поле, то, на­вер­ное, и маг­нит­ное поле долж­но со­зда­вать элек­три­че­ский ток. В пер­вой по­ло­вине XIX века уче­ные об­ра­ти­лись имен­но к таким опы­там: стали ис­кать воз­мож­ность со­зда­ния элек­три­че­ско­го тока за счет маг­нит­но­го поля.

Опыты Фарадея

Впер­вые уда­лось до­стичь успех в этом (т.е. по­лу­чить элек­три­че­ский ток за счет маг­нит­но­го поля) ан­глий­ско­му фи­зи­ку Май­к­лу Фа­ра­дею. Итак, об­ра­тим­ся к опы­там Фа­ра­дея.

Рис. 1. Опыт, ана­ло­гич­ный опыту Фа­ра­дея. При дви­же­нии маг­ни­та в ка­туш­ке, в ее цепи ре­ги­стри­ру­ет­ся элек­три­че­ский ток

Пер­вая схема была до­воль­но про­стой. Во-пер­вых, М. Фа­ра­дей ис­поль­зо­вал в своих опы­тах ка­туш­ку с боль­шим чис­лом вит­ков. Ка­туш­ка на­ко­рот­ко была при­со­еди­не­на к из­ме­ри­тель­но­му при­бо­ру, мил­ли­ам­пер­мет­ру (мА). Нужно ска­зать, что в те вре­ме­на не было до­ста­точ­но хо­ро­ших ин­стру­мен­тов для из­ме­ре­ния элек­три­че­ско­го тока, по­это­му поль­зо­ва­лись необыч­ным тех­ни­че­ским ре­ше­ни­ем: брали маг­нит­ную стрел­ку, рас­по­ла­га­ли рядом с ней про­вод­ник, по ко­то­ро­му про­те­кал ток, и по от­кло­не­нию маг­нит­ной стрел­ки су­ди­ли о про­те­ка­ю­щем токе. Так вот в дан­ном слу­чае токи могли быть очень неве­ли­ки, по­это­му ис­поль­зо­вал­ся при­бор мА, т.е. тот, ко­то­рый из­ме­ря­ет ма­лень­кие токи.

Вдоль ка­туш­ки М. Фа­ра­дей пе­ре­ме­щал по­сто­ян­ный маг­нит – от­но­си­тель­но ка­туш­ки маг­нит дви­гал­ся вверх и вниз.

Об­ра­ща­ем ваше вни­ма­ние на то, что в этом экс­пе­ри­мен­те впер­вые было за­фик­си­ро­ва­но на­ли­чие элек­три­че­ско­го тока в цепи в ре­зуль­та­те из­ме­не­ния маг­нит­но­го по­то­ка, ко­то­рый про­хо­дит сквозь ка­туш­ку.

Фа­ра­дей об­ра­тил вни­ма­ние и на тот факт, что стрел­ка мА от­кло­ня­ет­ся от сво­е­го ну­ле­во­го зна­че­ния, т.е. по­ка­зы­ва­ет, что в цепи су­ще­ству­ет элек­три­че­ский ток толь­ко тогда, когда маг­нит дви­жет­ся. Стоит толь­ко маг­ни­ту оста­но­вить­ся, стрел­ка воз­вра­ща­ет­ся в пер­во­на­чаль­ное по­ло­же­ние, в ну­ле­вое по­ло­же­ние, т.е. ни­ка­ко­го элек­три­че­ско­го тока в цепи в этом слу­чае нет.

Вто­рая за­слу­га Фа­ра­дея – уста­нов­ле­ние за­ви­си­мо­сти на­прав­ле­ния ин­дук­ци­он­но­го элек­три­че­ско­го тока от по­ляр­но­сти маг­ни­та и на­прав­ле­ния его дви­же­ния. Сто­и­ло Фа­ра­дею из­ме­нить по­ляр­ность маг­ни­тов и про­пус­кать маг­нит через ка­туш­ку с боль­шим чис­лом вит­ков, как тут же ме­ня­лось на­прав­ле­ние ин­дук­ци­он­но­го тока, того, ко­то­рый воз­ни­ка­ет в за­мкну­той элек­три­че­ской цепи.

Т.о. мы при­шли к тому, с чего на­чи­на­ли урок: под­твер­ди­лась ги­по­те­за, что элек­три­че­ский ток воз­ни­ка­ет, когда из­ме­ня­ет­ся маг­нит­ное поле.

Итак, неко­то­рое за­клю­че­ние. Из­ме­ня­ю­ще­е­ся маг­нит­ное поле со­зда­ет элек­три­че­ский ток. На­прав­ле­ние элек­три­че­ско­го тока за­ви­сит от того, какой полюс маг­ни­та про­хо­дит в дан­ный мо­мент через ка­туш­ку, в каком на­прав­ле­нии дви­жет­ся маг­нит.

И еще: ока­зы­ва­ет­ся, на зна­че­ние элек­три­че­ско­го тока вли­я­ет ко­ли­че­ство вит­ков в ка­туш­ке. Чем боль­ше вит­ков, тем и зна­че­ние тока будет боль­ше.

Об­ра­тим­ся те­перь ко вто­ро­му экс­пе­ри­мен­ту Фа­ра­дея. В чем он за­клю­чал­ся?

Рис. 2. Вто­рой экс­пе­ри­мент по ис­сле­до­ва­нию яв­ле­ния элек­тро­маг­нит­ной ин­дук­ции

Две ка­туш­ки раз­ме­ща­лись близ­ко друг с дру­гом. Одна ка­туш­ка с боль­шим чис­лом вит­ков под­клю­ча­лась к ис­точ­ни­ку тока, в этой цепи был ключ, ко­то­рый за­мы­кал и раз­мы­кал цепь. Вто­рая ка­туш­ка, тоже с боль­шим чис­лом вит­ков, под­клю­чен­ная к мил­ли­ам­пер­мет­ру на­пря­мую, ни­ка­ких ис­точ­ни­ков тока нет. Как толь­ко цепь за­мы­ка­лась, мил­ли­ам­пер­метр по­ка­зы­вал на­ли­чие элек­три­че­ско­го тока в цепи. Как толь­ко цепь раз­мы­ка­лась, мил­ли­ам­пер­метр вновь ре­ги­стри­ро­вал на­ли­чие элек­три­че­ско­го тока, но на­прав­ле­ние элек­три­че­ско­го тока из­ме­ня­лось на про­ти­во­по­лож­ное. Пока цепь была за­мкну­та, т.е. пока в цепи про­те­кал элек­три­че­ский ток, мил­ли­ам­пер­метр ни­ка­ко­го тока в элек­три­че­ской цепи не ре­ги­стри­ро­вал.

Выводы из экспериментов

Какие вы­во­ды были сде­ла­ны М.Фа­ра­де­ем в ре­зуль­та­те этих экс­пе­ри­мен­тов? Ин­дук­ци­он­ный элек­три­че­ский ток по­яв­ля­ет­ся в за­мкну­той цепи толь­ко тогда, когда су­ще­ству­ет пе­ре­мен­ное маг­нит­ное поле. При­чем это маг­нит­ное поле долж­но из­ме­нять­ся.

От чего зависит индукционный ток?

Если из­ме­не­ния маг­нит­но­го поля не про­ис­хо­дит, то не будет ни­ка­ко­го элек­три­че­ско­го тока. Даже если маг­нит­ное поле су­ще­ству­ет. Мы можем ска­зать, что ин­дук­ци­он­ный элек­три­че­ский ток прямо про­пор­ци­о­на­лен, во-пер­вых, числу вит­ков, во-вто­рых, ско­ро­сти маг­нит­но­го поля, с ко­то­рой из­ме­ня­ет­ся это маг­нит­ное поле от­но­си­тель­но вит­ков ка­туш­ки.

Читайте также:  Анатолий токов когда будет бой 2020

Рис. 3. От чего за­ви­сит ве­ли­чи­на ин­дук­ци­он­но­го тока?

Для ха­рак­те­ри­сти­ки маг­нит­но­го поля ис­поль­зу­ет­ся ве­ли­чи­на, ко­то­рая на­зы­ва­ет­ся маг­нит­ный поток. Она ха­рак­те­ри­зу­ет маг­нит­ное поле в целом, мы об этом будем го­во­рить на сле­ду­ю­щем уроке. Сей­час от­ме­тим лишь, что имен­но из­ме­не­ние маг­нит­но­го по­то­ка, т.е. числа линий маг­нит­но­го поля, про­ни­зы­ва­ю­щих кон­тур с током (ка­туш­ку, на­при­мер), при­во­дит к воз­ник­но­ве­нию в этом кон­ту­ре ин­дук­ци­он­но­го тока.

Источник

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1794. Магнит входит в центр замкнутой рамки. Что при этом будет происходить в рамке, если она сделана из:
а) пластика,
б) железа?

1795. К неподвижному железному кольцу приближают магнит так, как показано на рисунке 252. Найдите направление индукционного тока в кольце. Что нужно сделать, чтобы индукционный ток стал противоположного направления?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1796. С некоторой высоты свободно падает намагниченный стальной стержень. При своем движении он проходит сквозь отверстие в катушке с проволокой, и, выходя из нее, продолжает падение. Опишите изменения в движении стержня.

1797. На рисунке 253 изображена установка, в которой груз при падении вращает машину, дающую электрический ток. Этим током можно питать несколько небольших лампочек, включенных параллельно. Когда лампочки все выключены, то груз, вращая машину, быстро падает вниз. Включая в цепь машины по одной лампочке, можно заметить, что при каждом включении новой лампочки скорость падения груза уменьшается. Объясните это явление.
Если в школе имеется возможность, соберите такую установку и проделайте с ней опыт.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1798. На рисунке 254 изображено сечение проводника, расположенного перпендикулярно силовым линиям магнитного поля (проводник замкнут). Стрелкой показано направление движения проводника. Пользуясь правилом правой руки, определите направление индукционного тока в нем и докажите на этом случае индукции, что правило правой руки непосредственно вытекает из закона Ленца.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1799. На рисунке 255 изображены два проводника АВ и СD. Проводник АВ включен в цепь источника тока, концы же проводника CD присоединены к гальванометру. При замыкании и размыкании цепи проводника АВ в проводнике CD возникает индукционный ток. Пользуясь законом Ленца, определите в каждом отдельном случае направление индукционного тока в проводнике CD.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1800. Что происходит с незакрепленным металлическим кольцом, когда внутрь его вдвигают магнит северным полюсом (см. рис 252)?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1801. В однородное магнитное поле помещена проволочная рамка (рис. 256). Будет ли возникать индукционный ток в рамке, если ее:
а) перемещать поступательно;
б) вращать вокруг любой оси, параллельной магнитному полю;
в) вращать вокруг любой оси, перпендикулярной магнитному полю?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1802. Рама грузовика представляет собой замкнутый контур. Будет ли в ней возникать индукционный ток при движении машины?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор


1803. Чтобы обнаружить индукционный ток, используют замкнутый проводник, но не в виде одного витка провода, а в виде катушки. Почему катушка лучше?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1804. Можно ли получить индукционный ток на установке, изображенной на рисунке 257, не двигая магнит и навитый на него провод?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1805. Имея лишь катушку проволоки и постоянный магнит, как добиться, чтобы стрелка амперметра двигалась?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1806*. В какой момент может искрить комнатный выключатель света: при включении или при выключении? Почему?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1807*. Предохранители в аудио- и видеоаппаратуре перегорают обычно не во время работы, а при включении или выключении. Объясните явление.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1808*. Чем объясняется, что при включении электромагнита в цепь ток устанавливается не сразу, а некоторое время испытывает колебания?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1809*. В момент замыкания цепи энергия источника тока затрачивается не только на преодоление сопротивления цепи. На что еще затрачивается энергия?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1810*. Если водитель трамвая выключит электродвигатель и ток будет идти только через лампы освещения, искры, возникающие в месте контакта трамвайной дуги и провода, значительно уменьшатся. Почему?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1811*. Для устойчивого горения дуги при электросварке применяют стабилизатор — катушку со стальным сердечником. Ее включают последовательно с дугой. Почему стабилизатор помогает?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1812*. Для подачи переменного тока на предприятия и в жилые дома можно использовать подземный кабель, но категорически не разрешается прокладывать его вблизи газовых, водопроводных и канализационных труб, а также вблизи труб отопления. Почему?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1813*. Почему телефонные провода не рекомендуется размещать рядом с проводами переменного тока?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1814. На старых кораблях компасы обязательно устанавливались на массивных медных основаниях. Для чего это делалось?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1815*. Почему сердечник трансформатора делают не из сплошного железа, а из листового, причем отдельные листы изолированы друг от друга?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1816. При передаче электрической энергии на большие расстояния используется ток высокого напряжения. Почему?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1817. Районная станция, находящаяся на расстоянии 130 км от Москвы, подает в Москву ток мощностью в 48 ООО кВт. Какова должна быть сила тока для передачи энергии этой мощности при напряжении в 110 В и в 115 000 В?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1818. На рисунке 258 изображена схема индукционной электроплавильной печи, представляющей собой трансформатор, в котором первичная обмотка 2 состоит из нескольких витков провода. Вместо вторичной обмотки на сердечник трансформатора 1 надет кольцевой тигель 3 с металлом 4. При пропускании тока в первичной катушке сила тока, получаемая в тигле, достигает такой величины, что теплота, развиваемая этим током, расплавляет металл. а) Рассчитайте, какое количество теплоты получает металл в каждую секунду, если в первичную обмотку подводится ток мощностью в 100 кВт и коэффициент полезного действия всей установки 80%. б) Рассчитайте силу тока, протекающего по вторичной обмотке, если число витков первичной обмотки 500, а подводимое к ней напряжение 2000 В.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1819. В медицине для лечения применяется большой соленоид из 12-20 витков. Внутрь него помещается, например, больная рука пациента. По соленоиду пропускают ток высокой частоты, и рука прогревается. За счет чего выделяется тепло?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1820*. Рамку вращают по часовой стрелке в магнитном поле (рис. 259). Каково направление тока в ней?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1821. Сколько витков должна иметь вторичная обмотка понижающего трансформатора (рис. 260), первичная обмотка которого имеет 1200 витков, если напряжение должно быть понижено от 120 В до 4 В?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1822. Первичная обмотка трансформатора, включенная в сеть 110 В, имеет 550 витков. Какое число витков должна иметь вторичная обмотка, если необходимо получить 440 В?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1823. Катушки трансформатора имеют: первичная — 1200 витков, вторичная — 6000 витков. Какое напряжение получим на клеммах вторичной обмотки, если на клеммы первичной подаем напряжение 80 В?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1824. Каково должно быть напряжение для передачи мощности в 1000 кВт током в 100 А?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1825. Почему при передаче электрической энергии на большие расстояния экономнее пользоваться током высокого напряжения?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1826. Мощность в 500 кВт передают при помощи трансформатора, причем после трансформатора идет ток уже 50 А. Рассчитайте, каково напряжение на клеммах первичной и вторичной обмоток (при отсутствии потерь), если отношение числа витков первичной и вторичной обмоток 1 :100.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1827. Изменится ли соотношение между напряжениями на зажимах первичной и вторичной обмоток трансформатора, если железный сердечник вынуть или если вместо него вставить медный?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1828. Что изменится в трансформаторе, если его железный сердечник заменить алюминиевым?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор
1829. Трансформатор, коэффициент полезного действия которого 96%, используется для передачи энергии мощностью в 25 кВт с генератора, напряжение на зажимах которого 500 В. Сколько киловатт будет действительно переда¬но по линии, если число витков в первичной и вторичной обмотках 500 и 1000 соответственно, а сопротивление линии 3 Ом?

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

1830. Первичная обмотка трансформатора имеет 500 витков, а вторичная — 5000. Напряжение на первичной обмотке — 220 В. Каково будет напряжение на вторичной? Какова будет сила тока в первичной и вторичной обмотках трансформатора, если по линии передавать энергию мощностью в 11 кВт?

Источник



Катушка индуктивности

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Читайте также:  В чем принципиальный недостаток постоянного тока

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

линии магнитного поля

В – магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

катушка индуктивности магнитное поле

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I – сила тока в катушке , А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

LC-метр и катушка индуктивности

Имеется ферритовый сердечник

Катушка индуктивности

Начинаю вводить катушку в сердечник на самый край

катушка индуктивности измеряем индуктивность

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

Катушка индуктивности

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

Катушка индуктивности

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Катушка индуктивности

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

Катушка индуктивности

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Катушка индуктивности

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

тороидальная катушка индуктивности

Катушка индуктивности

Отдалим витки катушки друг от друга

Катушка индуктивности

Катушка индуктивности

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Катушка индуктивности

Катушка индуктивности

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Источник