Меню

Временные диаграммы напряжений мультивибратора

Краткие теоретические сведения о работе мультивибратора

date image2015-06-05
views image5994

facebook icon vkontakte icon twitter icon odnoklasniki icon

Мультивибратором называется релаксационный генератор, вырабатывающий электрические импульсы, форма которых близка к прямоугольной.

Название этого генератора отражает тот факт, что в спектральный состав сигнала, существенно отличающегося от гармонического (в данном случае – сигнал прямоугольной формы), входит большое число (мульти) гармонических составляющих. Это важно знать для оценки влияния такого сигнала на различные электрические цепи.

Длительность импульса у релаксационных генераторов определяется временем исчезновения (по латыни relaxatio) электрического или магнитного поля в одном из входящих в состав генераторов накопителе энергии, например, конденсаторе. Управление процессом накопления и расхода энергии осуществляется с помощью электронных ключей.

Форма выходных импульсов мультивибратора зависит от номиналов элементов схемы и может отличаться от прямоугольной. Ниже на рис.1 приводится общее представление реальных прямоугольных импульсов и основные их параметры.

Рис.1. Характерные участки и параметры импульсов

Импульсы имеют следующие характерные участки: 1-2 — фронт, 2-3 — вершина, 3-4 — срез (задний фронт). При работе с импульсами используют их параметры:

1. Амплитуда (высота) Um (Im) — наибольшее значение напряжения (тока) импульса данной формы.

2. Длительность импульса tИ это время от начала действия импульса до его завершения. Измеряется по основанию импульса или на уровне 0,1 Um, если границы импульса сильно скруглены. Имеет размерность времени.

3. Длительность фронта tФ , определяется временем нарастания импульса от 0 до Um. В инженерной практике для импульсов скругленной формы под tФ понимают время нарастания импульса от 0,1 Um до 0,9 Um.

4. Длительность среза tС , определяется временем спада импульса (в пределах 0,9. 0,1 Um). Чем меньше величины tФи tС тем ближе форма импульса к прямоугольной.

5. Период повторения Т – временной интервал между началами или окончаниями двух однополярных импульсов.

6. Частота повторения импульсов F — величина, обратная периоду (F = 1/Т). Измеряется в импульсах в секунду.

7. Пауза tП — интервал времени между импульсами: tП=ТtИ

8. Скважность Q отношение периода колебаний к длительности импульса, Q = Т / tИ . Если длительность импульса равна длительности паузы (tИ = tП ), то Q =2 и такой сигнал носит название меандр.

9. Коэффициент заполнения g величина, обратная скважности g = 1/Q

10. Крутизна фронта Sф или среза SС, — отношение амплитуды импульса к длительности фронта или среза: SФ = Um / tФ, SС = Um / tС , (В/с). Характеризует скорость нарастания или спада импульса.

Наиболее распространенная схема мультивибратора с коллекторно-базовыми емкостными связями представлена на рис. 2.

Особенностью схемы является то, что транзисторы работают здесь в ключевом режиме. Выходные импульсы снимаются с коллекторов транзисторов. Длительность импульса определяется временем нахождения транзистора в закрытом состоянии (когда на его коллекторе присутствует напряжение)[5]. Обычно схема мультивибратора выполняется симметричной на транзисторах с одинаковыми параметрами и при RK1= RK2= RK, RБ1= RБ2= RБ, С1= С2= С.

Современная схемотехника в основном базируется на транзисторных структурах n-p-n типа, для которых протекание токов и падения напряжений происходят сверху вниз (от плюса источника питания к его минусу по схеме), что удобно для анализа. Однако, лабораторная база построена на транзисторах p-n-p типа, поэтому все дальнейшие рассуждения будут отнесены именно к этому типу транзисторов .

Рис 2. Схема мультивибратора с коллекторно-базовыми

Мультивибратор представляет собой автоколебательную систему с положительной обратной связью, которая реализуется с помощью конденсаторов C1 и С2. Однако в режиме отсечки (транзистор закрыт) положительная обратная связь будет практически разорвана. Поэтому она существует при переходе транзистора из режима насыщения в режим отсечки и наоборот, то есть в активном режиме работы транзисторов. Последнее обуславливает большую скорость переключения транзисторов за счет значительного коэффициента усиления по току и действия положительной обратной связи. Графики изменения во времени коллекторных и базовых напряжений транзисторов показаны на рис. 3. Здесь же стрелками показаны направления воздействия сигналов.

Работу мультивибратора рассмотрим с момента времени t1, когда после очередного опрокидывания транзистор VT1 открылся (перешел в режим насыщения, при этом –UКЭ1 » 0, см. рис. 3, б) и через него начался разряд конденсатора C1 (см. рис. 3, в), заряженного ранее до напряжения UCmEк, разрядный ток которого протекает по цепи (см. рис. 2):

Читайте также:  Что принимают за единицу измерения напряжения

+ С1® RБ2® —Eк ® RЕк » 0 ® +ЕК ® э-к VT1 ® C1

Поскольку в режиме насыщения сопротивление участка коллектор-эмиттер транзистора VT1 практически равно нулю, можно считать, что в момент t1 левая, отрицательно заряженная, обкладка конденсатора С1 соединится с общим проводом (эмиттером VT2) и все напряжение заряда конденсатора UC2 = +EК приложится к переходу база-эмиттер транзистора VT2 (плюсом к базе, т.е. UБЭ2 = +UC2), переводя его в режим отсечки (UКЭ2 = –ЕК).

Если пренебречь влиянием на процесс разряда конденсатора С1 входной цепи закрытого транзистора VT2 (напряжение UС1 является обратным для p-n перехода база-эмиттер) и сопротивления эмиттер — коллектор

Рис.3. Временные зависимости коллекторных (выходных)

и базовых напряжений симметричного мультивибратора

открытого (насыщенного) транзистора VT1, то его разряд происходит с постоянной времени

При этом изменение напряжения на конденсаторе С1отзначения UCmEКпри разряде определяется выражением:

Одновременно в момент времени t1 начинается заряд конденсатора C2 (см. рис. 3, а) по цепи (см. рис. 2):

+ЕК ® э-б VT1 ® С2 ® RК2 ® EК

Постоянная времени заряда конденсатора

tЗ = С2× RК2 = С× RК (3)

Изменение напряжения на конденсаторе С2при заряде определяется выражением:

Для обеспечения автоколебательного режима работы необходимо, чтобы выполнялось условие tР > tЗ. В симметричном мультивибраторе это условие схемно реализуется путем выбора RБ> RК.

Во время заряда конденсатора С2 ток базы открытого транзистора VT1 состоит из двух составляющих: тока через резистор RБ1 и тока заряда конденсатора С2 , т.е.

Этим объясняется отрицательный пик напряжения на базе транзистора VT1 (см. рис. 3, а) в момент его открывания t1, поскольку

Наличие зарядного тока IЗАР С2 приводит к искажению фронта импульса на коллекторе закрытого транзистора VT2 (см. рис. 3, г), что следует из выражения

Поскольку ток IЗАР.С2 = , то при t=0 (в момент времени начала заряда t1) этот ток имеет наибольшее значение, равное ЕК / RК2, при котором (из (5.6)) напряжение на коллекторе UКЭ2 = 0 (точка А на рис. 3, г), вместо UКЭ2 =–ЕК (точка В), соответствующего закрытому состоянию транзистора VT2.

С ростом времени (в промежутке t1t2) ток заряда уменьшается до нуля, что приводит (см. (7)) к возрастанию напряжения на коллекторе VT2 до значения UКЭ2 = –ЕК (см. рис. 3, г)).

После быстрого заряда конденсатора С2 (т.к. tЗ

Источник



Автоколебательный мультивибратор

Генераторы импульсов на операционном усилителе.

На базе ОУ разнообразные схемы генераторов: гармонических сигналов и несинусоидальных колебаний, в том числе генераторы прямоугольных импульсов, которые называются мультивибраторами.

Мультивибраторы могут работать в автоколебательном режиме и в ждущем.

В режиме автоколебаний мультивибратор осуществляет непрерывную генерацию входных импульсов.

Принципиальная схема автоколебательного мультивибратора приведена на рисунке 38,а. Временные диаграммы, поясняющие ее работу – на рисунке 38,б.

Рисунок 38 Автоколебательный мультивибратор

Резисторы R1 и R2 образуют цепь положительной обратной связи (ПОС), которая обеспечивает быстрое изменение напряжения во время формирования переднего и заднего фронтов выходного импульса. Длительность выходного импульса определяется элементами R3 и C1, включенными между выходом и инвертирующим входом ОУ.

Полагаем, что перед началом работы схемы напряжение на конденсаторе С1 отсутствует. При включении источника питания с напряжением +Е, – Е в результате действия ПОС на выходе устанавливается напряжение UВЫХ =+ Е.

Обозначим через γ коэффициент деления делителя цепи ПОС:

Тогда напряжение на неинвертирующем входе составит = γЕ.

Конденсатор С1 начинает заряжаться от положительного напряжения UВЫХ =+ Е через резистор R3 с постоянной времени τ = R3 C1 .

В момент времени t1 (рисунок 38,б) напряжение на конденсаторе, а следовательно, на инвертирующем входе станет равным :

На этом формирование положительного импульса заканчивается. Так как это напряжение приложено к инвертирующему входу, то на выходе ОУ устанавливается напряжение UВЫХ = – Е, а на неинвертирующий вход через цепь ПОС подается напряжение = – γЕ.

В промежутке времени t1 – t2 конденсатор С1 перезаряжается напряжением противоположной полярности и стремиться зарядиться до напряжения UВЫХ = – Е. В момент времени t2 напряжение на конденсаторе станет равным UC = . Это напряжение, приложенное к инвертирующему входу, изменит состояние ОУ и на выходе его устанавливается напряжение UВЫХ =+ Е. С момента t2 начинается процесс формирования второго положительного импульса.

Читайте также:  Датчик напряжения аккумулятора для автомобиля

Указанные процессы происходят периодически, в результате чего на выходе мультивибратора формируется последовательность прямоугольных импульсов.

Первый импульс формируется при отсутствии начального напряжения на конденсаторе, и его длительность определяется из соотношения:

Второй и последующие импульсы формируются при перезаряде конденсатора от напряжения = – γЕ до напряжения = γЕ . Поэтому они имеют несколько большую длительность:

tИ = τ ln .

Так как в рассмотренной схеме заряд и разряд конденсатора происходит по одной и той же цепи, то длительности выходных положительных и отрицательных импульсов равны, а период следования импульсов равен Т= 2 tИ.

Для изменения соотношения длительностей положительных и отрицательных импульсов, цепи заряда и разряда конденсатора выполняются раздельными. В этом случае в цепи ПОС вместо одного резистора R3 включают параллельно два резистора разных номиналов. Последовательно с резисторами включают диоды, направление включения которых определяется током заряда и разряда.

Ждущий мультивибратор.

В ждущем режиме мультивибратор осуществляет генерацию одиночных импульсов в момент подачи на его вход запускающих импульсов. Принципиальная схема ждущего мультивибратора (ЖМВ) приведена на рисунке 39,а. Временные диаграммы, поясняющие ее работу – на рисунке 39,б.

В исходном состоянии на выходе мультивибратора поддерживается отрицательное напряжение UВЫХ = – Е. Часть выходного напряжения поступает на инвертирующий вход и обеспечивает открытое состояние диода VD1, шунтирующего конденсатор С1. Таким образом , UД =UВЫХ , где RД – сопротивление диода.

Рисунок 39 Ждущий мультивибратор.

Напряжение на неинвертирующем входе = –γЕ. При подаче на вход короткого положительного импульса с амплитудой UЗАП > схема переходит в состояние, при котором UВЫХ = + Е. Напряжение на неинвертирующем входе становится равным = γЕ. С этого момента в схеме развивается переходный процесс, определяющий длительность положительного выходного импульса ЖМВ. На этом этапе диод VD1 закрыт и конденсатор С1 заряжается через резистор R3 . Напряжение на конденсаторе приложено к инвертирующему входу, и когда оно достигнет значения , начинается переход схемы в исходное состояние. На выходе ОУ устанавливается напряжение UВЫХ = – Е. Конденсатор начинает перезаряжаться напряжением противоположной полярности. Когда напряжение на конденсаторе станет равным нулю, открывается диод VD1 и перезаряд конденсатора прекращается. Новый цикл начинается с приходом запускающего импульса.

Для нормальной работы схемы необходимо, чтобы период следования запускающих импульсов Т был больше суммы, определяемой временем формирования импульса tИ и временем восстановления tВ:

Длительность выходного импульса, формируемого ЖМВ, равна:

Длительность импульса можно регулировать изменением τ или γ.

Время восстановления tВ= τ ln(1+γ ).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Мультивибратор

Симметричный мультивибратор

Мультивибратор

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными.

На рисунке представлена схема симметричного мультивибратора.

Схема мультивибратора

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (tи) = t паузы (tп). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Читайте также:  Что такое напряжение мышц передней брюшной стенки

Выходной сигнал симметричного мультивибратора

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Частота мультивибратора (формула)

,где f — частота в герцах (Гц), С — ёмкость в микрофарадах (мкФ) и R — сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

Частота. Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

Длительность импульса. Измеряется в долях секунды: мили, микро, нано, пико и так далее.

Амплитуда. В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

Скважность. Отношение периода (Т) к длительности импульса (t). Если длина импульса равна 0,5 периода, то скважность равна двум.

Импульс

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Схема мультивибратора с подстройкой частоты

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах.

Схема

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром.

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов, которым можно измерить ёмкость конденсатора.

Источник