Меню

Выпрямитель для тока своими руками

Простой выпрямитель тока.

Доброго времени суток. Как работает с простой выпрямитель тока и как собрать его своими руками – тема сегодняшней публикации в рубрике «Советы и рекомендации».

Для начала давайте разберемся, что такое выпрямитель тока.

Выпрямитель переменного токаэто радиоэлектронное устройство, преобразовывающее переменный электрический ток в постоянный. Выпрямители бывают однополуперодными , двухполупериодными, с конденсаторным фильтром и стабилизированными.

Теперь будем разбираться от простого, к более сложному.

Однополупериодный простейший выпрямитель тока.

На рисунке ниже изображен график переменного синусоидального тока. Как видно, его синусоида периодически оказывается то в положительной области относительно оси t, то в отрицательной. Попытаемся его «выпрямить» диодом, и посмотрим, что из этого получится.

Простой выпрямитель тока

Диодэто полупроводниковый прибор с двумя электродами (катод и анод). Который имеет различную электрическую проводимость, зависящую от того, какой полярности напряжение к нему приложено. Проще говоря, он пропускает постоянный ток только в одну сторону, а от переменного только 1 полупериод. Работа выпрямителя хорошо видна на изображении внизу. Наблюдаются сильные пульсации тока от ноля до амплитудного значения. Сказать проще, такой выпрямитель тока никуда не годится.

Простой выпрямитель тока

Двухполупериодный простой выпрямитель тока.

Существует 2 схемы выпрямителей этого типа:

  • Со средней точкой;
  • Классическая, с диодным мостом (еще ее называют схемой Гретса).

Простой выпрямитель тока

Первая применяется редко, ввиду того, что для ее реализации требуется трансформатор со средней точкой на вторичной обмотке. Поэтому, мы не станем задерживаться и разбирать ее подробно. Вторя — самая распространенная и представляет больший интерес.

Простой выпрямитель тока

Для изготовления такого выпрямителя нам понадобятся:

  • Трансформатор (с первичной обмоткой на 220 вольт и вторичной, к примеру, на 12в).
  • Четыре диода или диодная сборка (подбираются по параметрам, в зависимости от требований к собираемому выпрямителю).
  • Электролитический конденсатор (выбирается по емкости: чем больше емкость – тем чище и стабильней будет выходной ток. И по напряжению – оно должно быть выше, как минимум, в два раза, чем у выпрямителя).

Простой выпрямитель тока

Следует запомнить, что выпрямленный и отфильтрованный ток без нагрузки, будет выше по напряжению, чем заявленная вторичная обмотка тр-ра, примерно на 1,4.

Стабилизированный блок питания.

В принципе, это та же электросхема, что и предыдущая, только с добавлением стабилизатора на базе микросхемы К142ЕН12 (КРЕН12), или аналогичной. Следует знать, что напряжение на входе стабилизатора, должно превосходить то, которое требуется от блока питания не меньше чем на 1,5 вольта.

Простой выпрямитель тока

На этом, я думаю, можно закончить. Надеюсь, публикация была полезна. Удачи…

Источник

Простой выпрямитель на 12 вольт своими руками

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Читайте также:  Пусковой ток аккумулятора varta

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново.

Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью. Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Читайте также:  Ток питания в чем измеряется

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

Источник

Выпрямитель переменного тока

Поскольку большинство радиоэлектронных устройств питаются постоянным током, а в нашей сети переменный, то самое время научиться его «выпрямлять». Для преобразования переменного напряжения или тока в постоянный служат выпрямители, о которых мы и поговорим. Самый простой выпрямитель можно выполнить всего на одном диоде:

однополупериодный выпрямитель

На графиках, полученных с помощью осциллографа и представленных на рисунке, хорошо видно, что до диода напряжение было переменным, разнополярным. Диод «обрезал» отрицательные полуволны, и остались одни положительные. Таким образом, мы получили однополярное напряжение, но оно сильно пульсирует, и питать им электронику невозможно. Чтобы сгладить пульсации используют конденсаторы большой емкости:

однополупериодный выпрямитель

Пока проходит положительная полуволна, конденсатор заряжается, во время провала он отдает запасенную энергию и разряжается. Теперь дело обстоит несколько лучше, но не совсем хорошо — чем мощнее нагрузка, тем глубже будут провалы и тем большую емкость нужно включать, чтобы как-то спасти положение. Поэтому такой вид выпрямителя, который называется однополупериодным, используют достаточно редко и только для выпрямления переменного тока достаточно высокой частоты и малых токов нагрузки. В противном случае размеры сглаживающих конденсаторов будут неоправданно большими.

Для улучшения формы выпрямленного напряжения достаточно добавить в схему еще три диода:

двухполупериодный выпрямитель

В этом выпрямителе, который называют двухполупериодным, волны перенаправляются диодами и на выходе получается тоже пульсирующее напряжение, но удвоенной частоты, а пауз между импульсами практически нет. Добавим сюда сглаживающий конденсатор и увидим, что постоянное напряжение действительно похоже на постоянное:

двухполупериодный выпрямитель

Преимущество такого типа выпрямителя не только в лучшей форме выпрямленного напряжения, но и в том, что в качестве диодов можно использовать приборы, рассчитанные на вдвое меньший ток, поскольку в каждый момент времени через каждый диод течет только половина тока нагрузки. Такая схема получила настолько широкое распространение, что диоды собирают в мосты прямо на заводе. Такие сборки мы называем диодными или выпрямительными мостами.

диодный мост

Но двухполупериодная схема может иметь и другой вид, в котором присутствует всего два диода:

двухполупериодный выпрямитель

Здесь «минусовым» проводом служит отвод от середины вторичной обмотки трансформатора, а положительные полуволны собираются двумя диодами на «плюсе» благодаря двум одинаковым полуобмоткам. В этой схеме диоды тоже работают с половинным током нагрузки, но оправдана она лишь тогда, когда трансформатор имеет две обмотки, каждая из которых выдает номинальное напряжение и обмотки эти можно включить последовательно.

Источник



Простые выпрямители, фильтры, стабилизаторы

Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!

Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.

Простые выпрямители, фильтры, стабилизаторы

Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.

На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.

Читайте также:  Тема переменный ток основные параметры

Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.

Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.

В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) [F 1/76-21] уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.

На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.

Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

Простые выпрямители, фильтры, стабилизаторы

На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.

Простые выпрямители, фильтры, стабилизаторы

Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Источник