Меню

Взаимодействие параллельных токов ленц

Взаимодействие токов

Взаимодействие токов — приходящая на единицу длины каждого из параллельных проводников, пропорциональна величинам токов и обратно пропорциональна расстоянию между ними.

Взаимодействие токов

Взаимодействие токов

Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Обозначения в формуле:

F — сила взаимодействия токов;

Взаимодействие токов— магнитная постоянная;

l1 и l2 — длинна проводника;

b — Расстояние между двумя проводниками, (r — радиус соответственно).

Источник

Взаимодействие параллельных токов

Определим силу, с которой взаимодействуют (притягиваются или отталкиваются) проводники с токами I1иI2(рис.3.19)

Взаимодействие токов осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой провод (ток).

Предположим, что оба тока I1иI2текут в одном направлении. ТокI1создает в месте расположения второго провода (с токомI2) магнитное поле с индукцией В1(см.3.61), которое действует наI2с силойF:

(3.66)

Пользуясь правилом левой руки (см. закон Ампера), можно установить:

а) параллельные токи одного направления притягиваются;

б) параллельные токи противоположного направления отталкиваются;

в) непараллельные токи стремятся стать параллельными.

Контур с током в магнитном поле. Магнитный поток

Пусть в магнитном поле с индукцией В находится контур площадью S, нормальк которому составляет угол α с вектором(рис.3.20). Для подсчета магнитного потока Ф разобьем поверхностьSна бесконечно малые элементы так, чтобы в пределах одного элементаdSполе можно считать однородным. Тогда элементарным магнитным потоком сквозь бесконечно малую площадкуdSбудет:

,

где Bn– проекция векторана нормаль.

Если площадка dSрасположена перпендикулярно вектору магнитной индукции, то α=1,cosα=1 иdФ =BdS;

Магнитный поток сквозь произвольную поверхность Sравен:

Если поле однородное, а поверхность Sплоская, то величинаBn=constи:

(3.67)

Для плоской поверхности, расположенной вдоль однородного поля, α = π/2 и Ф = 0. Линии индукции любого магнитного поля представляют собой замкнутые кривые. Если имеется замкнутая поверхность, то магнитный поток, входящий в эту поверхность, и магнитный поток, выходящий из нее, численно равны и противоположны по знаку. Поэтому магнитный поток сквозь произвольную замкнутуюповерхность равен нулю:

(3.68)

Формула (3.68) есть теорема Гаусса для магнитного поля, отражающая его вихревой характер.

Магнитный поток измеряется в Веберах (Вб): 1Вб = Тл · м 2 .

Работа перемещения проводника и контура с током в магнитном поле

Если проводник или замкнутый контур с током Iперемещаются в однородном магнитном поле под действием силы Ампера, то магнитное поле совершает работу:

где ΔФ-изменение магнитного потока через площадь контура или площадь, описываемую прямолинейным проводником при движении.

Если поле неоднородно, то:

.

Явление электромагнитной индукции. Закон Фарадея

Сущность явления электромагнитной индукции состоит в следующем: при любом изменении магнитного потока сквозь площадь, ограниченную замкнутым проводящим контуром, в последнем возникает Э.Д.С. и, как следствие, индукционный электрический ток.

Индукционные токи всегда противодействуют вызывающему их процессу. Это означает, что создаваемое ими магнитное поле стремится компенсировать то изменение магнитного потока, которое этот ток вызвал.

Опытным путем установлено, что величина Э.Д.С. индукции εi, наводимой в контуре, зависит не от величины магнитного потока Ф, а от скорости его измененияdФ/dtчерез площадь контура:

(3.70)

Знак «минус» в формуле (3.70) является математическим выражением правила Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающему этот ток.

Формула (3.70) является выражением основного закона электромагнитной индукции.

Пользуясь формулой (3.70), можно вычислить силу индукционного тока I, зная сопротивление контураR, и величину зарядаQ, прошедшего за времяtв контуре:

Если в однородном магнитном поле перемещается отрезок прямого проводника длиной ℓ со скоростью V, то изменение магнитного потока учитывается через площадь, описываемую отрезком при движении, т.е.

Закон Фарадея может быть получен из закона сохранения энергии. Если проводник с током находится в магнитном поле, то работа источника тока εIdtза времяdtбудет затрачиваться на Ленц-Джоулево тепло (см. формулу 3.48) и работу по перемещению проводника в полеIdФ (см.3.69) можно определить:

εIdt=I 2 Rdt+IdФ (3.71)

тогда ,

где и есть ЭДС индукции (3.70)

т.е. при изменении Ф в контуре возникает добавочная ЭДС εiв соответствии с законом сохранения энергии.

Можно также показать, что εiвозникает в металлическом проводнике вследствие действия силы Лоренца на электроны. Однако на неподвижные заряды эта сила не действует. Тогда приходится предполагать, что переменное магнитное поле создает электрическое поле, под действием которого и возникает индукционный токIiв замкнутом контуре.

Читайте также:  Расшифровка трансформаторов тока тол 10

Источник

Магнитное взаимодействие токов

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Ханса Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик Андре Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды. Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора . Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 1.16.1.

Линии магнитной индукции полей постоянного магнита и катушки с током. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Проще всего это сделать, внося в исследуемое магнитное поле проводник с током и измеряя силу, действующую на отдельный прямолинейный участок этого проводника. Этот участок проводника должен иметь длину Δl, достаточно малую по сравнению с размерами областей неоднородности магнитного поля. Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:

Эта сила называется силой Ампера. Она достигает максимального по модулю значения Fmax, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:

Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:

В общем случае сила Ампера выражается соотношением:

Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10 –4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.

Читайте также:  Два источника тока 12в с внутренним сопротивлением

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник (рис. 1.16.2).

Правило левой руки и правило буравчика

Если угол α между направлениями вектора и тока в проводнике отличен от 90°, то для определения направления силы Ампера более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора Поступательное перемещение буравчика будет показывать направление силы Ампера (рис. 1.16.2). Правило буравчика часто называют правилом правого винта.

Одним из важных примеров магнитного взаимодействия является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.

Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

В Международной системе единиц СИ коэффициент пропорциональности k принято записывать в виде:

где μ – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

μ = 4π·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Формула, выражающая закон магнитного взаимодействия параллельных токов, принимает вид:

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы и магнитной индукции параллельных токов I1 и I2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора если при вращении буравчик перемещается в направлении тока (рис. 1.16.3).

Магнитное поле прямолинейного проводника с током

Магнитное взаимодействие параллельных и антипараллельных токов

Рис. 1.16.4 поясняет закон взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2·10 –7 Н на каждый метр длины.

Источник

6.5. Взаимодействие двух проводников с током

Применим закон Ампера для вычисления силы взаимодействия двух длинных прямолинейных проводников с токами I1 и I2, находящихся на расстоянии d друг от друга (рис. 6.26).

Рис. 6.26. Силовое взаимодействие прямолинейных токов:
1 — параллельные токи; 2 — антипараллельные токи

Проводник с током I1 создает кольцевое магнитное поле, величина которого в месте нахождения второго проводника равна

Это поле направлено «от нас» ортогонально плоскости рисунка. Элемент второго проводника испытывает со стороны этого поля действие силы Ампера

Подставляя (6.23) в (6.24), получим

При параллельных токах сила F21 направлена к первому проводнику (притяжение), при антипараллельных — в обратную сторону (отталкивание).

Аналогично на элемент проводника 1 действует магнитное поле, создаваемое проводником с током I2 в точке пространства с элементом с силой F12. Рассуждая таким же образом, находим, что F12 = –F21, то есть в этом случае выполняется третий закон Ньютона.

Читайте также:  Частота входного напряжения переменного тока

Итак, сила взаимодействия двух прямолинейных бесконечно длинных параллельных проводников, рассчитанная на элемент длины проводника, пропорциональна произведению сил токов I1 и I2 протекающих в этих проводниках, и обратно пропорциональна расстоянию между ними. В электростатике по аналогичному закону взаимодействуют две длинные заряженные нити.

На рис. 6.27 представлен опыт, демонстрирующий притяжение параллельных токов и отталкивание антипараллельных. Для этого используются две алюминиевые ленты, подвешенные вертикально рядом друг с другом в слабо натянутом состоянии. При пропускании через них параллельных постоянных токов силой около 10 А ленты притягиваются. а при изменении направления одного из токов на противоположное — отталкиваются.

Рис. 6.27. Силовое взаимодействие длинных прямолинейных проводников с током

На основании формулы (6.25) устанавливается единица силы тока — ампер, являющаяся одной из основных единиц в СИ.

Ампер — это сила неизменяюшегося тока, который, протекая по двум длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м, вызывает между ними силу взаимодействия 2×10 –7 Н на каждый метр длины провода.

Пример. По двум тонким проводам, изогнутым в виде одинаковых колец радиусом R = 10 см, текут одинаковые токи I = 10 А в каждом. Плоскости колец параллельны, а центры лежат на ортогональной к ним прямой. Расстояние между центрами равно d = 1 мм. Найти силы взаимодействия колец.

Решение. В этой задаче не должно смущать, что мы знаем лишь закон взаимодействия длинных прямолинейных проводников. Поскольку расстояние между кольцами много меньше их радиуса, взаимодействующие элементы колец «не замечают» их кривизны. Поэтому сила взаимодействия дается выражением (6.25), куда вместо надо подставить длину окружности колец Получаем тогда

Источник



Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/12.8

§12. Постоянное магнитное поле

12.8 Взаимодействие параллельных токов — закон Ампера.

Теперь без труда можно получить формулу для вычисления силы взаимодействия двух параллельных токов.

Img Slob-10-12-039.jpg

Итак, по двум длинным прямым параллельным проводникам, находящимся на расстоянии R друг от друга (которое во много, раз в 15 меньше длин проводников), протекают постоянные токи I1, I2.

В соответствии с полевой теорией взаимодействие проводников объясняется следующим образом: электрический ток в первом проводнике создает магнитное поле, которое взаимодействует с электрическим током во втором проводнике. Чтобы объяснить возникновение силы, действующей на первый проводник, необходимо проводники «поменять ролями»: второй создает поле, которое действует на первый. Повращайте мысленно правый винт, покрутите левой рукой (или воспользуйтесь векторным произведением) и убедитесь, что при токах текущих в одном направлении, проводники притягиваются, а при токах, текущих в противоположных направлениях, проводники отталкиваются [1] .

Таким образом, сила, действующая на участок длиной Δl второго проводника, есть сила Ампера, она равна

F_2 = I_2 \Delta l B_1\) , (1)

где B1 — индукции магнитного поля, создаваемого первым проводником. При записи этой формулы учтено, что вектор индукции \(

\vec B_1\) перпендикулярен второму проводнику. Индукция поля, создаваемого прямым током в первом проводнике, в месте расположения второго, равна

Из формул (1), (2) следует, что сила, действующая на выделенный участок второго проводника, равна

Легко убедится, что такая же по модулю сила действует на участок такой же длины первого проводника. В этом можно убедиться, просто взглянув внимательно на полученный результат (3) – силы токов входят в эту формулу симметрично. Таким образом, силы взаимодействия между проводниками удовлетворяют третьему закону Ньютона.

Можно наглядно проиллюстрировать взаимодействие проводников, построив картины силовых линий магнитных полей, создаваемых двумя параллельными проводниками. Если мы умеем рассчитывать поля, то по известному алгоритму можно построить эти силовые линии, затратив немного усилий. Вспомним также, что основоположник теории электромагнитного поля Майкл Фарадей воспринимал силовые линии (магнитного и электрического полей) как упругие трубки, благодаря натяжению которых и возникают силы взаимодействия. Ниже представлены точно рассчитанные картины силовых линий магнитных полей в плоскости перпендикулярной двум длинным проводникам, по которым протекают постоянные электрические токи.

Img Slob-10-12-040.jpg

Так на рис.40 показаны силовые линии, для токов текущем в одном направлении, на рис. 40.а силы токов равны, а на рис. 40.б различны. Не правда ли – эти «упругие трубки» стягивают проводники?

Img Slob-10-12-041.jpg

На рис. 41 токи текут в противоположных направлениях, в обоих случаях силы токов различны. Здесь проводникам явно не нравится находиться рядом – они стремятся разойтись.

Задание для самостоятельной работы.

  1. Задайте самостоятельно направления токов на рис. 40, 41 и укажите направления силовых линий на этих рисунках.

Источник