Меню

Явление электрического тока в различных средах

Явление электрического тока в различных средах

Электрическим током называют всякое упорядоченное движение электрических зарядов. Электрический ток может проходить через различные вещества при определенных условиях. Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля.

Поэтому в этом разделе мы попытаемся установить, какие частицы, переносят электрический заряд в различных средах.

Электрический ток в металлах.

Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ .

Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля.

Следовательно, электрический ток в металлах — это упорядоченное движение электронов.

Сила тока в металлическом проводнике определяется по формуле:

где I — сила тока в проводнике, e — модуль заряда электрона, n — концентрация электронов проводимости, — средняя скорость упорядоченного движения электронов, S — площадь поперечного сечения проводника.

Плотность тока проводимости численно равна заряду, проходящему за 1с через единицу площади поверхности, перпендикулярной направлению тока.

где j — плотность тока.

У большинства металлов практически каждый атом ионизирован. А так как концентрация электронов проводимости одновалентного металла равна

где Na — постоянная Авогадро, A — атомная масса металла, ρ — плотность металла,

то получаем что концентрация определяется в пределах 10 28 — 10 29 м -3 .

Закон Ома для однородного участка цепи:

где U — напряжение на участке, R — сопротивление участка.

Для однородного участка цепи:

где ρ У — удельное сопротивление проводника , l — длина проводника, S — площадь поперечного сечения проводника.

Удельное сопротивление проводника зависит от температуры и эта зависимость выражается соотношением:

ρу = ρоу ( 1 + α ∆Т )

где ρоу — удельное сопротивление металлического проводника при температуре Т =273К, α — термический коэффициент сопротивления, ∆Т = Т — Т о изменение температуры.

Вольт-амперная характеристика металлов.

Сила тока в проводниках по закону Ома прямо пропорциональна напряжению. Такая зависимость имеет место для проводников со строго заданным сопротивлением ( для резисторов ).

Тангенс угла наклона графика равен проводимости проводника. Проводимостью называется величина, обратная сопротивлению

где G — проводимость.

Но так как сопротивление металлов зависит от температуры, то вольт-амперная характеристика металлов не является линейной.

Электрический ток в растворах и расплавах электролитов.

Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией . Полученные в следствие распада ионы служат носителями заряда в жидкости, а сама жидкость становятся проводником.

Вне электрического поля ионы движутся хаотически. Под действием внешнего электрического поля ионы, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля: катионы к катоду, анионы — к аноду.

Следовательно, электрический ток в растворах (расплавах) электролитов — это направленное перемещение ионов обоих знаков в противоположных направлениях.

Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом .

При движении внутри электролитов ионы взаимодействуют с молекулами воды и другими ионами, т.е. электролиты оказывают некоторое противодействие движению, а, следовательно, обладают сопротивлением. Электрическое сопротивление электролитов зависит от концентрации ионов, величины заряда иона, от скорости движения ионов обоих знаков.

Сопротивление электролитов так же определяется по формуле:

где ρ У — удельное сопротивление электролита , l — длина жидкого проводника, S — площадь поперечного сечения жидкого проводника.

При увеличении температуры электролита уменьшается его вязкость, что ведет к увеличению скорости движения ионов. Т.е. при повышении температуры сопротивление электролита уменьшается.

Законы Фарадея.

1. Масса вещества, выделяемого на электроде, прямо пропорциональна электрическому заряду, прошедшему через электролит.

где m — масса вещества, выделяющегося на электроде, k — электрохимический эквивалент, q — заряд, прошедший через электролит.

2. Электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту.

где М— молярная масса вещества, F- постоянная Фарадея, z — валентность иона.

постоянная Фарадея численно равна заряду, который должен пройти через электролит, чтобы выделить из него массу вещества, численно равную химическому эквиваленту.

Объединенный закон Фарадея.

Электрический ток в газах.

При нормальных условиях газы состоят из нейтральных молекул, а поэтому являются диэлектриками. Так как для получения электрического тока необходимо наличие заряженных частиц, то молекулы газа следует ионизировать (оторвать электроны от молекул). Для ионизации молекул необходимо затратить энергию — энергию ионизации , количество которой зависит от рода вещества. Так, энергия ионизации минимальна для атомов щелочных металлов, максимальна — для инертных газов.

Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной энергии возрастает скорость движения молекул, нарастает интенсивность их теплового движения и при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы.

Электроны, оторвавшись от молекулы могут присоединятся к нейтральным молекулам, образуя при этом отрицательно заряженные ионы.

Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.

Под действием внешнего электрического поля ионы обоих знаков и электроны движутся в направлении действия сил электрического поля: положительные ионы к катоду, отрицательные ионы и электроны — к аноду. Т.е. электрический ток в газах — это упорядоченное движение ионов и электронов под действием электрического поля.

Вольт- амперная характеристика газов.

Зависимость силы тока от напряжения выражена кривой ОАВС.

На участке графика ОА сила тока подчиняется закону Ома. При малом напряжении сила тока мала, т.к. ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения между электродами скорость направленного движения электронов и ионов возрастает, поэтому большая часть заряженных частиц достигает электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U 1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2 . Такой ток называют током насыщения , и ему соответствует участок графика АВ.

При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда кинетическая энергия достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Дополнительная ионизация приводит к лавинообразному увеличению количества заряженных частиц, а следовательно и к значительному увеличению силы тока без воздействия внешнего ионизатора. Прохождение электрического тока без воздействия внешнего ионизатора называют самостоятельным разрядом . Такая зависимость выражена участком графика АС.

Электрический ток в вакууме.

В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е. необходимо создать определенные условия, которые помогут получить заряженные частицы.

Свободные электроны есть в металлах. При комнатной температуре они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода . Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур.

Читайте также:  Сообщение по теме генераторы переменного тока

При нагревании металла количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией . Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная к источнику тока нить раскаляется и с ее поверхности вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток.

Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода.

Вакуумный диод Вакуумный триод

Вольт-амперная характеристика вакуумного диода.

Зависимость силы тока от напряжения выражена кривой ОАВС D .

При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны. При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у катода электронное облако.

По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ является характеризует прямую зависимость силы тока от напряжения, т.е. в интервале напряжений U1 — U2 выполняется закон Ома.

Нелинейная зависимость на участке ВС D объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода.

При достаточно большом значении напряжения U3 все электроны, вылетающие с катода, достигают анода, и электрический ток достигает насыщения.

Так же в качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток.

Таким образом, электрический ток в вакууме может быть создан упорядоченным движением любых заряженных частиц (электронов, ионов) .

Электрический ток в полупроводниках.

Полупроводники — вещества, удельное сопротивление которых убывает с увеличением температуры и зависит от наличия примесей и изменения освещенности. Удельное сопротивление проводников при комнатной температуре находится в интервале от 10 -3 до 10 7 Ом • м. Типичными представителями полупроводников являются кристаллы германия и кремния.

В этих кристаллах атомы соединены между собой ковалентной связью. При нагревании ковалентная связь нарушается, атомы ионизируются. Это обуславливает возникновение свободных электронов и «дырок»- вакантных положительных мест с недостающим электроном.

При этом электроны соседних атомов могут занимать вакантные места, образуя «дырку» в соседнем атоме. Таким образом не только электроны, но и «дырки» могут перемещаться по кристаллу. При помещении такого кристалла в электрическое поле электроны и дырки придут в упорядоченное движение — возникнет электрический ток.

Собственная проводимость.

В чистом кристалле электрический ток создается равным количеством электронов и «дырок». Проводимость, обусловленную движением свободных электронов и равного им количества «дырок» в полупроводниковом кристалле без примесей, называют собственной проводимостью полупроводника .

При повышении температуры собственная проводимость полупроводника увеличивается, т.к. увеличивается число свободных электронов и «дырок».

Примесная проводимость.

Проводимость проводников зависит от наличия примесей. Примеси бывают донорные и акцепторные. Донорная примесь — примесь с большей валентностью. Например, для четырехвалентного кремния донорной примесью является пятивалентный мышьяк. Четыре валентных электрона атома мышьяка участвуют в создании ковалентной связи, а пятый станет электроном проводимости.

При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и «дырки». Поэтому в кристалле количество свободных электронов преобладает над количеством «дырок». Проводимость такого проводника является электронной, полупроводник является п олупроводником n -типа . Электроны являются основными носителями заряда, «дырки» — неосновными .

Акцепторная примесь — примесь с меньшей валентностью. Например, для четырехвалентного кремния акцепторной примесью является трехвалентный индий. Три валентных электрона атома индия участвуют в создании ковалентной связи с тремя атомами кремния, а на месте четвертой незавершенной ковалентной связи образуется «дырка».

При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и «дырки». Поэтому в кристалле количество «дырок» преобладает над количеством свободных электронов. Проводимость такого проводника является дырочной, полупроводник является полупроводником p -типа . «Дырки» являются основными носителями заряда, электроны — неосновными .

p-n переход.

При контакте полупроводников p- типа и n -типа через границу происходит диффузия электронов из n -области в p- область и «дырок» из p- области в n -область. Это приводит к возникновению запирающего слоя, препятствующего дальнейшей диффузии. p-n переход обладает односторонней проводимостью.

При подключении p-n перехода к источнику тока так, чтобы p- область была соединена с положительным полюсом , а n-область — с отрицательным полюсом, появляется движение основных носителей зарядов через контактный слой. Этот способ подключения называют включением в прямом направлении.

При подключении p-n перехода к источнику тока так, чтобы p- область была соединена с отрицательным полюсом , а n-область — с положительным полюсом, толщина запирающего слоя увеличивается, и движение основных носителей зарядов через контактный слой прекращается, но может иметь место движение неосновных зарядов через контактный слой. Этот способ подключения называют включением в обратном направлении.

Принцип действия полупроводникового диода основан на свойстве односторонней проводимости p-n перехода. Основное применение полупроводникового диода — выпрямитель тока.

Вольт-амперная характеристика полупроводникового диода.

Зависимость силы тока от напряжения выражена кривой АОВ.

Ветвь ОВ соответствует пропускному направлению тока, когда ток создается основными носителями зарядов, и при увеличении напряжения сила тока возрастает. Ветвь АО соответствует току, созданному неосновными носителями зарядов, и значения силы тока невелики.

Источник

Электрический ток в различных средах

Конспект по физике для 8 класса «Электрический ток в различных средах». Что представляет собой электрический ток в металлах, электролитах и газах.

Электрический ток в различных средах

Электрический ток может проходить через различные вещества: металлы, растворы и расплавы некоторых веществ и при определённых условиях через газы. Для возникновения электрического тока в какой-либо среде необходимо, чтобы в ней имелись заряженные частицы, которые будут перемещаться под действием электрического поля. Этими частицами могут быть как электроны, так и ионы.

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в металлах располагаются в определённом порядке, образуя кристаллическую решётку. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними хаотично движутся свободные электроны.

Если в металле создать электрическое поле, то свободные электроны начнут двигаться упорядоченно в направлении действия электрических сил. Возникнет электрический ток. Итак, электрический ток в металлах представляет собой упорядоченное движение свободных электронов.

Доказательство того, что ток в металлах создают именно свободные электроны, было получено в опытах, поставленных в 1913 г. российскими физиками Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. английскими физиками Р. Толменом и Т. Стюартом.

В основе этих опытов лежит предположение о том, что если металлический проводник привести в движение и резко затормозить, то свободные электроны должны по инерции продолжать движение относительно ионной решётки, подобно тому как отклоняются вперёд пассажиры при резком торможении автобуса. Следовательно, в проводнике должен возникнуть кратковременный электрический ток.

Для проведения подобного опыта на катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам. Диски соединяют с чувствительным прибором, называемым гальванометром, который позволяет судить о наличии тока. Катушку приводят в быстрое вращение, а затем резко останавливают. Стрелка гальванометра при торможении катушки отклоняется, что говорит о возникновении кратковременного тока. По направлению отклонения стрелки и устанавливается, что ток создаётся движением именно отрицательно заряженных частиц.

Читайте также:  Термические характеристики трансформатора тока

В медной проволоке на каждый атом меди приходится в среднем один свободный электрон. В куске проволоки массой m = 64 г находится примерно 6 • 10 23 свободных электронов.

Неправильно думать, что электроны в электрическом поле движутся прямолинейно. Траектория их движения является сложной из-за взаимодействия с другими частицами. Движение электронов в этом случае напоминает дрейф льдин во время ледохода, когда они, двигаясь беспорядочно и сталкиваясь друг с другом, дрейфуют по течению реки.

ЭЛЕКТРИЧЕСКИЙ ТОК В ЭЛЕКТРОЛИТАХ

Растворы солей, кислот и щелочей также могут проводить электрический ток. Такие растворы называют растворами электролитов.

В сосуд с дистиллированной водой опустим два угольных электрода (стержня) и соединим их с источником тока, лампочкой и ключом. Между электродами возникает электрическое поле, но лампочка не горит. Это означает, что дистиллированная вода не проводит электрический ток. Но если растворить в воде какую-либо соль, например поваренную, то лампочка загорится. Это означает, что в растворе поваренной соли присутствуют свободные заряды, которые создают электрический ток. Что это за частицы?

При растворении в воде солей, кислот и щелочей нейтральные молекулы этих веществ распадаются на положительные и отрицательные ионы. Это явление называется электролитической диссоциацией.

Например, молекулы поваренной соли распадаются на положительный ион натрия и отрицательный ион хлора. Пока электрическое поле отсутствует, ионы совершают беспорядочное тепловое движение. Но в электрическом поле ионы, подобно электронам в металлах, начинают двигаться. Положительные ионы натрия в электрическом поле будут двигаться к электроду, соединённому с отрицательным полюсом источника тока. Такой электрод называют катодом. А отрицательные ионы хлора будут двигаться к электроду, соединённому с положительным полюсом источника тока. Такой электрод называют анодом.

Электрический ток в растворах (или расплавах) электролитов представляет собой перемещение ионов обоих знаков в противоположных направлениях.

При протекании электрического тока через растворы или расплавы электролитов на электродах выделяется чистое вещество. Этот процесс называют электролизом. Электролиз широко используется в современной электрометаллургии — получении металлов путём электролиза. Например, весь алюминий в настоящее время получают электролитически. Хорошим примером также является электролитическое очищение (рафинирование) меди.

Посредством электролиза можно покрыть металлические предметы слоем другого металла. Этот процесс называется гальваностегией.

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ

Укрепим две металлические пластины параллельно друг другу. Соединим одну со стержнем, а другую с корпусом электроскопа. Сообщим им разноимённые заряды.

Опыт показывает, что электроскоп не разряжается. Это означает, что воздух между пластинами не проводит электрический ток.

В обычных условиях газы являются хорошими изоляторами, так как они состоят из нейтральных атомов или молекул. В них нет свободных электрических зарядов, которые могут создавать электрический ток.

Если внести в пространство между пластинами пламя спички или спиртовки, то электроскоп быстро разрядится.

Этот опыт показывает, что под действием пламени газ может стать проводником электрического тока, потому что часть нейтральных атомов и молекул газа превращается в ионы. Электроны могут отрываться от атомов также под действием света.

Вы смотрели Конспект по физике для 8 класса «Электрический ток в различных средах».

Источник

Электрический ток в различных средах

Электрический ток в различных средах

Одним из параметров, характеризующих электрический ток, является его проводимость, которая меняется в зависимости от внешних условий. В каждом конкретном случае степень проводимости может меняться, поэтому, для изучения и более глубокого понимания протекающих процессов используется таблица электрического тока в средах. С ее помощью можно более наглядно узнать и представить себе, какими качествами обладает электрический ток в тех или иных случаях.

электрический ток в средах таблица

Фактически, электрический ток может протекать в пяти разных видах среды:

  1. Металлы.
  2. Вакуум.
  3. Полупроводники.
  4. Жидкости.
  5. Газы.

Электрический ток в металлах

Электрический ток в металлах представляет собой упорядоченное движение электронов, которые перемещаются в указанном направлении под воздействием электрического поля. Многочисленные проведенные опыты показали, что в процессе перетекания токов ионы самого металла остаются на месте и участия в перемещении заряда не принимают. Все металлы, находящиеся в твердом состоянии, обычно имеют кристаллическое строение. Положительные ионы закреплены в узлах кристаллической решетки, а все остальное пространство заполнено свободными электронами.

Электроны никак не связаны с ядрами. При этом ситуация внутри металла уравновешена, так как суммарный отрицательный заряд свободных электронов в нормальном состоянии по своему абсолютному значению равен положительному заряду всех ионов, составляющих структуру решетки. Таким образом металлы в обычном своем состоянии электрически нейтральны, и все свободные электроны внутри структуры осуществляют хаотичное движение.

Как только в металле формируется электрическое поле, свободные электроны начинают, поз воздействием внешних электрических сил, совершать направленное движение. Так появляется электрический ток. Примечательно, что направленное движение этих электронов продолжается в хаотичном порядке.

электрический ток в разных средах

Как только в проводнике возникнет электрическое поле, оно распространяется по всей длине проводника с огромной скоростью (скорость перемещения электрического тока близка к скорости света, а это 300 тысяч км. в секунду)!

Электрический ток в вакуумной среде

Отличительная особенность вакуума – отсутствие заряженных частиц. Фактически – это диэлектрик. Свободные электроны в огромных количествах присутствуют в металлах. Если температура окружающей среды близка к комнатной, электроны (в соответствии с законами кулоновского притяжения) не могут покинуть металл, оставаясь в его структуре. Но как только начинается процесс нагрева металла, из него в больших количествах начинают вылетать электроны. Этот процесс получил название термоэлектронная эмиссия. Чтобы инициировать ее в вакуум в качестве одного из электродов помещают тончайшую проволочную нить, изготовленную из особо тугоплавкого типа металла (это, так называемая, нить накала). При подключении к источнику питания из этой нити начинают вылетать раскаленные электроны, которые попадают в электрическое поле, расположенное между двумя электродами. Начинается упорядоченное движение, создается электрический ток.

тема электрический ток в различных средах

Данное явление послужило основой для работы электронных ламп, диодов, триодов, работающих в вакууме.

Электрический ток в средах-полупроводниках

Полупроводники – это вещества, находящиеся в некоем среднем состоянии между проводниками и диэлектриками. (Типичный пример – кристаллы кремния или германия). Здесь при соединении атомов друг с другом существует ковалентная связь. Эта связь нарушается в момент нагревания материала, а атомы ионизируются. В результате появляется все больше свободных электронов, а также свободных мест («дырок») положительного заряда.

электрический ток в различных средах

Подобным образом «дырки» появляются и в соседних атомах. Более того, эти дырки, наряду со свободными электронами начинают свободно перемещаться по кристаллу. В результате, после помещения кристалла в электрическое поле, начинается упорядоченное движение вышеперечисленных частиц, возникает электрический ток.

Электрический ток в различных средах: жидкости

Жидкими проводниками второго типа считаются растворы солей, оснований и кислот. Отметим, что в данном перечне отсутствует вода. Дело в том, что в чистом виде молекулы в воде имеют полярность, что присуще диэлектрикам. Таким образом для создания условий существования электрического тока в жидкости необходимо привнести извне вещество, которое и предоставит свободные носители для перемещения заряда.

Читайте также:  Линии напряженности электрического поля проводника с током

электрический ток в различных средах таблица

Электрический ток в различных средах: газы

В нормальных стандартных условиях гады представляют собой нейтральные молекулы, которые по сути являются диэлектриками. Чтобы получить ток, необходимо оторвать молекулы от атома, «ионизировать» среду. Это достигается как методом нагрева, так и различными способами облучения. В результате, формируется три типа носителей зарядов

  • положительные ионы;
  • отрицательные ионы;
  • электроны.

Упорядоченное движение этих частиц также начинается под воздействием внешнего электрического поля. Но здесь наблюдается разнонаправленное движение, одни движутся к катоду, другие – к аноду.

электрический ток в средах

Общие выводы

Таким образом, рассматривая тему как распространяется электрический ток в разных средах, можно отметить: в газах упорядоченное движение начинается под воздействием электрического поля.

Электрический ток в различных средах – растворы и расплавы электролитов. Многие электролиты в обычном своем состоянии являются диэлектриками. Но после растворения их в воде, эти вещества становятся проводниками. Данный процесс получил название электролитической диссоциации. Электрический ток в разных средах раствором протекает под воздействием внешнего электрополя. При этом одни ионы движутся к катоду, а другие – к аноду.

Подведем итог

Наиболее наглядно помогает увидеть, как протекает электрический ток в различных средах таблица. Очевидно, что условия протекания зависят от структуры материала, но процесс всегда начинается под воздействием внешним.

Источник

Таблица электрического тока в различных средах

Одним из основных свойств электрического тока, является его способность к проводимости в разных условиях. Степень проводимости для каждого случая отличается между собой. Поэтому, когда изучается электрический ток в различных средах, таблица помогает наглядно представить, какими качествами он обладает в том или ином случае. Все вещества, в соответствии с их электрической проводимостью, разделяются на несколько основных категорий.

Металлы, как проводники электрического тока

При прохождении электрического тока в металлах, существенных изменений не наблюдается, за исключением обязательного нагрева. Металлы отличаются высокой концентрацией электронов, влияющих на уровень проводимости. Происходит их постоянное движение с высокой скоростью.

В узлах кристаллических решеток металлов располагаются положительные ионы, производящие тепловые колебания. В промежутках между ними происходит движение свободных электронов, которым придается ускорение с помощью электрического поля.

Движение электрического тока в полупроводниках

Таблица электрического тока в различных средах

Полупроводники обладают собственными свойствами, влияющими на проводимость. Основой их проводимости является р-п переход. Повышение температуры вызывает увеличение удельного сопротивления вещества. При этом, возрастает количество свободных электронов, на месте которых остаются виртуальные заряды, называемые дырками.

Поэтому, основной особенностью электрического тока в полупроводниках, является движение не только свободных электронов, но и дырок. При росте температуры, проводимость увеличивается из-за резкого снижения сопротивления.

Жидкость и газ – эффективные проводники

Всем известно, что дистиллированная вода не является проводником. Однако, если опустить в нее хотя-бы один кристалл обычной соли, произойдет замыкание цепи. Это вызвано появлением в воде свободных носителей зарядов. Происходит явление электролитической диссоциации, когда молекулы распадаются на ионы под воздействием растворителя. Такие жидкие проводники, где содержатся подвижные носители зарядов, называются электролитами.

Газы в обычном состоянии, как и дистиллированная вода, также являются диэлектриками, поскольку содержат нейтральные молекулы и атомы. Все эти частицы не имеют зарядов и придают газам высокие изолирующие свойства. Для того, чтобы газ стал проводником, в нем необходимо присутствие заряженных частиц в виде свободных носителей зарядов.

Как правило, проводниками являются ионизированные газы с положительными и отрицательными ионами. Проводимость в газах может быть создана самостоятельно, или путем искусственного внесения в них заряженных частиц.

Проводники и диэлектрики в электрическом поле

Применение электрического тока в металлах

Направление электрического тока

Определение электрического тока

Электрический ток – сила тока

Чем отличаются проводники от полупроводников

Источник



III. Основы электродинамики

Тестирование онлайн

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах — очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.

Источник