Меню

Законы постоянного тока теория для егэ

Конспект по физике на тему «Постоянный ток» (подготовка к ЕГЭ)

Постоянный ток.

Тема 1. Электрический ток в металлах.

Электрический ток – направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

– наличие заряженных частиц;

– электрическое поле ( создается источниками тока).

Носители электрического тока:

– в металлах: свободные электроны;

– в электролитах: положительные и отрицательные ионы;

– в газах: положительные ионы и электроны;

– в полупроводниках: электроны и «дырки»;

– в вакууме: электроны.

Графическое изображение некоторых элементов электрической цепи:

Условное направление тока: от «+» источника к «-».

Сила тока I (А) показывает, какой заряд проходит через поперечное сечение проводника за 1 с:

где N – число электронов.

Плотность тока:

Закон Ома для участка цепи:

Сила тока и скорость движения электронов:

где n – концентрация.

Скорость движения электронов:

Сопротивление R (Ом) металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

p (Ом*м) – удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м площадью поперечного сечения 1 м 2 , изготовленный из определенного материала;

l (м) – длина проводника;

S (м 2 ) – площадь сечения.

Зависимость сопротивления проводника от температуры:

R – сопротивление при 0 o C ;

– температурный коэффициент (табличная величина).

Напряжение U ( B ) характеризует работу электрического поля по перемещению положительного заряда:

Вольт – амперная характеристика – это зависимость силы тока от напряжения:

Тема 2. Соединение проводников.

Тема 3. Полная цепь.

Полная цепь содержит источник тока.

Сторонние силы – это силы любой природы (кроме электрической), которые разделяют заряды внутри источника тока.

Виды сторонних сил: механические, магнитные, химические, световые, тепловые.

Электродвижущая сила (В) характеризует работу сторонних сил по перемещению зарядов внутри источника:

Сторонние силы переносят положительные заряды внутри источника от «-» к «+».

Закон Ома для полной цепи:

R – полное сопротивление внешней цепи

r – внутреннее сопротивление источника.

Сила тока короткого замыкания (сопротивление R стремится к нулю):

Напряжение на внешней цепи:

КПД источника тока:

Соединения источников:

Направление тока и знаки ЭДС:

Работа и мощность электрического тока.

Работа и энергия электрического тока:

Закон Джоуля Ленца:

Мощность тока (мощность на внешней цепи, мощность на нагрузке, полезная мощность, тепловая мощность):

Мощность на внешней цепи будет максимальная, если R = r :

Мощность внутренней цепи:

Полная мощность:

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДВ-210761

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Основные понятия и законы постоянного тока — Электродинамика — Теоретический материал для подготовки к ЕГЭ

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

Коэффициент пропорциональности R, называемый электрическим сопротивлением, является характеристикой проводника [R] = Ом. Сопротивление проводника зависит от его геометрии и свойств материала:

где l — длина проводника, ρ — удельное сопротивление, S — площадь поперечного сечения, р является характеристикой материала и его состояния. [ρ] = Ом∙м.

Проводники можно соединять последовательно. Сопротивление такого соединения находится как сумма сопротивлений:

При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

Для того чтобы в цепи длительное время протекал электрический ток, в составе цепи должны содержаться источники тока. Количественно источники тока характеризуют ихэлектродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесенного заряда:

Читайте также:  Защита электродвигателя по току от перегрузки электронная трехфазная

Если к зажимам источника тока подключить нагрузочное сопротивление R, то в получившейся замкнутой цепи потечет ток, силу которого можно подсчитать по формуле:

image96

Это соотношение называют законом Ома для полной цепи.

Электрический ток, пробегая по проводникам, нагревает их, совершая при этом работу:

image97

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.

Источник

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Теория к заданию 14 из ЕГЭ по физике

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

Читайте также:  Что такое вихревые токи в трансформаторе

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Читайте также:  Видеоуроки по физике сила тока напряжение сопротивление

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

  • Русский язык
  • Математика (профильная)
  • Обществознание
  • Физика
  • История
  • Биология
  • Химия
  • Литература
  • Информатика
  • Задания ЕГЭ
  • Тесты
  • Варианты
  • Теория
  • Банк заданий
  • Перевод баллов
  • Сочинение ЕГЭ
  • Отзывы

Источник



Сила тока. Напряжение. Сопротивление

Подробнее
Подробнее
Подробнее

Электрический ток. Сила тока. Условия существования постоянного тока в цепи. Электродвижущая сила (ЭДС). Сопротивление. Напряжение. Измерение силы тока и напряжения.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Сила тока — количественная характеристика электрического тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда \(q\) , прошедшего через поперечное сечение проводника за время \(t\) , к этому времени. \[\fbox<$I=\dfrac$>\]

Единицы измерения: \(\displaystyle [\text<А>]\) (Ампер).

Условия существования постоянного тока в цепи :

наличие свободных заряженных частиц

наличие электрического поля (разности потенциалов на концах проводника)

Электродвижущая сила (ЭДС)

Для того, чтобы ввести понятие ЭДС, разберемся сначала со сторонними силами.

По цепи идёт ток, стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм. Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока.

\(R\) — сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.

Сторонняя сила \(\vec_\text<ст>\) не имеет отношения к стационарному электрическому полю. Обозначим через \(A_\text<ст>\) работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы \(A_\text<ст>\) называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда q вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, \(A_\text<ст>\) — это также работа сторонней силы по перемещению заряда по всей цепи.

Сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле не может поддерживать постоянный ток. Опыт показывает, что работа \(A_\text<ст>\) прямо пропорциональна перемещаемому заряду \(q\) . Поэтому отношение \(\displaystyle \frac>\) уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается \(\mathscr\) : \[\fbox<$\mathscr=\dfrac>$>\] Данная величина называется электродвижущей силой (ЭДС) источника тока.

Единицы измерения: \(\displaystyle [\text<В>]\) (Вольт).

Электрическое напряжение между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.

Единицы измерения: \(\displaystyle [\text<В>]\) (Вольт).

Измерение силы тока и напряжения

Для измерения силы тока используется измерительный прибор — амперметр . Включается в цепь последовательно.

Для измерения напряжения используется измерительный прибор — вольтметр . Включается в цепь параллельно.

Источник