Меню

Запишите формулу энергии магнитного поля тока назовите входящие величины

Энергия магнитного поля

date image2015-10-14
views image22545

facebook icon vkontakte icon twitter icon odnoklasniki icon

Энергия магнитного поля.

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Энергия магнитного поля, создаваемого током в замкнутом контуре индуктивностью L, равна где I — сила тока в контуре.

Энергия магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф = LI, причем при изменении тока на dI магнитный поток изменяется на dФ = LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dА = I= LIdI. Тогда работа по созданию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.

Энергию магнитного поля можно представить как функцию величин, характеризу­ющих это поле в окружающем пространстве. Для этого рассмотрим частный слу­чай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

где Sl = V — объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

Источник

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб:

1 Гн = 1 Вб / 1 А.

Читайте также:  Что значит возбуждение генератора постоянного тока

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой:

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз; поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I 2 R Δt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI Опубликовано в разделах: Электродинамика, Магнитное поле

Источник

Энергия магнитного поля тока

теория по физике 🧲 магнетизм

Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи эта энергия переходит в другие виды энергии.

То, что для создания тока необходимо затратить энергию, т. е. необходимо совершить работу, объясняется тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Записать выражение для энергии тока I, текущего по цепи с индуктивностью L (т.е. для энергии магнитного поля тока), можно на основании аналогии между инерцией и самоиндукцией, о которой мы говорили в прошлой теме.

Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль скорости тела в электродинамике играет сила тока I как величина, характеризующая движение электрических зарядов.

Читайте также:  Расчет тока короткого замыкания doc

Если это так, то энергия магнитного поля тока W М будет подобна кинетической энергии тела в механике. Поэтому ее можно определить формулой:

Энергия магнитного поля тока

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Пример №1. В катушке индуктивностью 0,15 Гн и очень малым сопротивлением r сила тока равна 4 А. Параллельно катушке присоединили резистор сопротивлением R>> r. Какое количество теплоты выделится в катушке и в резисторе после быстрого отключения силы тока?

При параллельном подключении к катушке большого сопротивления R>> r, сила тока, идущая через катушку, почти не изменяется. Энергия в катушке равна:

При отключении источника тока система катушка–сопротивление станет изолированной. Для изолированной системы справедлив закон сохранения энергии. В данном случае это означает, что вся энергия, запасенная в катушке, выделится в виде тепла в катушке и резисторе:

W М = 0 , 15 · 4 2 2 . . = 1 , 2 ( Д ж )

Катушка индуктивности подключена к источнику постоянного тока. Как изменится энергия магнитного поля катушки при увеличении силы тока через катушку в 3 раза?

а) уменьшится в 3 раза

б) увеличится в 9 раз

в) увеличится в 3 раза

г) уменьшится в 9 раз

Алгоритм решения

Решение

Энергия магнитного поля тока определяется формулой:

Видно, что энергия магнитного поля тока прямо пропорционально зависит от квадрата силы тока в катушке. Следовательно, если сила тока увеличится втрое, то энергия магнитного поля увеличится в 3 2 , то есть в 9 раз.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Энергия магнитного поля катушки с током равна 0,64 Дж. Индуктивность катушки равна 20 мГн. Какова сила тока в катушке?

Источник



Магнитная энергия контура с током

Электрический ток обладает запасом так называемой магнитной энергии. Если в процессе вычисления данной энергии принимать все провода за идеально проводящие, то это не повлияет на результат, по той причине, что магнитная энергия зависима лишь от величины и распределения токов, а также от магнитных свойств заполняющей пространство среды.

Вывод формулы энергии магнитного поля

Для начала рассмотрим случай с одиночным неподвижным замкнутым контуром (витком проводника).

Пускай изначально сила тока в нем равняется нулю. Не важно каким способом доводим значение тока в витке до I . Вместе с ростом тока в контуре повышается и значение магнитного потока Ф , проходящего через него. Возникает электродвижущая сила (ЭДС) индукции. Элементарная работа, производимая внешним источником против ЭДС индукции, будет эквивалентна следующему выражению: δ A в н е ш = — ε и н д I d t .

Применяя закон Фарадея, выводим: δ A в н е ш = 1 c I d Φ .

Данное соотношение носит общий характер. Оно является справедливым и для ферромагнитных материалов, ведь в процессе его вывода относительно магнитных свойств среды не вводилось никаких предположений. Однако стоит отметить, что в случае, когда среда не обладает гистерезисом, к примеру, являясь пара- или диамагнетиком, δ A в н е ш будет применяться исключительно в целях роста значения магнитной энергии W m , соответственно:

Исходя из условий закона Био-Савара-Лапласа, можно заявить, что индукция магнитного поля тока линейно зависима от силы тока. В условиях переменной силы тока, протекающего по жесткому неподвижному контуру, картина силовых линий не претерпевает изменений, а индукция в каждой точке прогрессирует пропорционально силе тока. Соответственно, поток магнитной индукции Ф , проходящий через неизменную и недвижимую площадь, тоже пропорционален силе тока, по этой причине: Φ = L I c ,

Читайте также:  Подключить лампочку не той силы тока

где L представляет собой индуктивность контура, постоянный коэффициент пропорциональности, не обладающий зависимостью от силы тока и индукции магнитного поля. Подставим ( 5 ) в ( 4 ) , получим:

Из формулы ( 6 ) следует, что:

Формула W m = L 2 I c 2 = 1 2 c определяет энергию магнитного поля, формирующегося током ( I ) , который протекает по контуру с индуктивностью L .

Формула W m = L 2 I c 2 = 1 2 c может быть записана в следующем виде: W m = 1 c ∫ ∑ I i ‘ d Φ i ‘ .

Для справедливости формул W m = L 2 I c 2 = 1 2 c и I Φ = Φ 2 2 L незначительно, что виток в процессе возрастания тока остается неподвижным, по той причине, что энергия зависима лишь от состояния системы, а не от способа достижения такого состояния.

Примеры решения задач

Задание: Сила тока в витке эквивалентна I = 1 А . Магнитный поток Ф , проходящий через площадь витка составляет 100 м к В б . Найдите энергию магнитного поля в витке.

Решение

В качестве фундамента решения задачи примем формулу: W m = 1 2 I Φ .

Переведем величину магнитного потока, заданного в условиях задачи, в систему С И : 100 м к В б = 10 — 4 В б .

Проведем вычисления: W m = 1 2 · 1 · 10 — 4 = 5 · 10 — 3 ( Д ж ) .

Ответ: W m = 5 · 10 — 3 ( Д ж ) .

Задание: Рядом друг с другом расположены два витка проводника. По первому протекает ток I = 1 А . Второй соединен с баллистическим гальванометром, при выключении тока в контуре ( 1 ) через гальванометр проходит заряд q = 10 — 8 К л . Полное сопротивление цепи равно R = 5 О м . Чему равняется взаимная индуктивность витков?

Решение

Магнитная энергия ( W m ) витка с током может быть записана как: W m = L I 2 2 . С другой стороны энергия витка, который соединен с гальванометром, может быть рассчитана как: W m ‘ = q U 2 . Заряд на втором контуре появляется благодаря тому, что он находится в переменном магнитном поле первого витка, и по закону сохранения энергии мы можем записать, что: W m ‘ = W m . Следовательно, мы можем приравнять и правые части выражений W m = L I 2 2 и W m ‘ = q U 2 , получим: L I 2 2 = q U 2 → L I 2 = q U . Из уравнения выше выразим индуктивность: L = q U I 2 . По закону Ома для участка цепи имеем: U = I R . Соответственно: L = q R I .

Эта задача может быть решена иным способом. Обозначим через ε 2 ЭДС индукции, которая вызвана переменным магнитным полем, которое создается в момент выключения тока в первом контуре: ε 2 = — L d I d t . ЭДС индукции можно записать по закону Ома следующим образом: ε 2 = I 2 R , где силу тока найдем как: I 2 = d q d t , в таком случае выражение ε 2 = I 2 R преобразуется в формулу вида: ε 2 = d q d t R . Приравняем правые части выражений ε 2 = — L d I d t и ε 2 = d q d t R , на выходе получим: — L d I d t = d q d t R → — L d I = R d q .

Проинтегрируем приведенную выше формулу с учетом того, что ток в первом контуре меняется от I до нуля, а заряд во втором от нуля до q , получим: — L ∫ I 0 d I = R ∫ 0 q d q → L I = R q → L = R q I .

Данный метод дает абсолютно такой же результат. Таким образом, раз все величины в условиях задачи приведены в системе С И , произведем вычисления: L = 10 — 8 · 5 1 = 5 · 10 — 8 ( Г н ) .

Источник