Меню

Защита минимального напряжения электродвигателей схема

11-5. Защита минимального напряжения

После отключения короткого замыкания происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время короткого замыкания имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственного расхода. В результате напряжение на шинах собственного расхода, а следовательно, и на электродвигателях понижается настолько, что вращающий момент па валу электродвигателя может оказаться недостаточным для его разворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55—65% UHOM. , Поэтому, для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственного расхода, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.

Наиболее просто защита минимального напряжения может быть выполнена с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.

Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте [Л. 42], показана на рис. 11-7. Реле минимального напряжения прямого действия 1РНВ — 4РНВ включены на междуфазные напряжения АВ и ВС. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автомат 3А с мгновенным электромагнитным расцепителем (использованы две фазы автомата).

Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель, что исключает возможность однофазных коротких замыканий в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автомат 1А с электромагнитным мгновенным расцепителем, а в фазе С автомат 2А с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.

При повреждениях в цепях напряжения рассматриваемая защита будет работать следующим образом.. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматов, так как цепи напряжения не имеют глухого заземления.

При двухфазном коротком замыкании ВС отключится только автомат 2А фазы С. Реле напряжения 1РНВ и 2РНВ остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. Реле ЗРНВ и 4РНВ, запустившиеся при коротком замыкании в цепях напряжения, после отключения автомата 2А вновь подтянутся, так как на них будет подано напряжение через конденсатор от фазы А.

При коротком замыкании АВ или АС отключается автомат 1А, установленный в фазе А. После отключения короткого замыкания реле 1РНВ и 2РНВ вновь подтянутся, так как на них будет подано напряжение от фазы С через конденсатор. Реле ЗРНВ и 4РНВ не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С.

Таким образом, рассмотренная схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных видах повреждения цепей напряжения — трехфазном коротком замыкании или при отключении обоих автоматов 1А и 2А.

Сигнализация неисправности цепей напряжения осуществляется контактами реле 1РН, 2РН, ЗРН и контактами автоматов 1А, 2А, ЗА,

В установках с постоянным оперативным током защита минимального напряжения выполняется для каждой секции сборных шин собственного расхода по схеме, приведенной па рис. 11-8. В цепи реле времени В1, действующего на отключение неответственных электродвигателей, включены последовательно контакты трех минимальных реле напряжения H1. Благодаря такому включению реле предотвращается ложное срабатывание защиты при перегорании любого предохранителя в цепях трансформатора напряжения.

Читайте также:  Номинальное напряжение сети для электросчетчика

Напряжение срабатывания реле Н1 принимается порядка 70% UHOM.

Выдержка времени защиты на отключение неответственных электродвигатели отстраивается от отсечек электродвигателей и устанавливается равной 0,5—1,5 с. Выдержка времени на отключение ответственных электродвигателей принимается 10—15 с, для того чтобы защита не действовала на их отключение при снижениях напряжения, вызванных короткими замыканиями и самозапуском электродвигателей.

Как показывает опыт эксплуатации, в ряде случаев самозапуск электродвигателей продолжается 20—25 с при снижении напряжения на шинах собственного расхода до 60—70% UHOM. При этом, если не принять дополнительных мер, защита минимального напряжения (реле H1), имеющая уставку срабатывания 0,6—0,7 UHOM, могла бы доработать и отключить ответственные электродвигатели. Для предотвращения этого в цепи обмотки реле времени В2, действующего на отключение ответственных электродвигателей, включается контакт четвертого реле напряжения H2. Это минимальное реле напряжения имеет уставку срабатывания порядка 0,4-0,5 UHOM и надежно возвращается во время самозапуска. Реле Н2 будет длительно держать замкнутым свой контакт только при полном снятии напря-жения с шин собственного расхода. В тех случаях, когда длительность самозапуска меньше выдержки времени реле В2, реле H2 не устанавливается.

В некоторых случаях для обеспечения самозапуска наиболее ответственных электродвигателей приходится отключать, кроме неответственных, также и часть ответственных электродвигателей. При этом целесообразно применять схему, осуществляющую автоматическое повторное включение (АПВ) отключенных ответственных электродвигателей после восстановления напряжения на шинах собственного расхода [Л. 14].

12 Июнь, 2009 38179 ]]> Печать ]]>

Источник



Защита минимального напряжения в схемах станков, установок и машин

Защита минимального напряженияЗащита минимального напряжения исключает возможность самозапуска электродвигателя или работы его при резко пониженном напряжении сети. Эту защиту называют иногда нулевой.

У двигателей постоянного тока параллельного возбуждения и асинхронных двигателей при снижении напряжения уменьшается магнитный поток и пропорциональный ему вращающий момент, что приводит к перегрузке двигателя и его перегреву. Это сокращает срок службы двигателя и может быть причиной выхода его из строя. Кроме того, при работе с пониженным напряжением двигатель, потребляя увеличенный ток, увеличивает падение напряжения в сети и ухудшает работу других потребителей.

Защита минимального напряжения Самозапуск (самопроизвольный запуск, происходящий при восстановлении напряжения после его исчезновения или при включении общего рубильника станка магистрали и т. д.) для двигателей большинства механизмов промышленных предприятий недопустим по условиям безопасности обслуживающего персонала, из-за опасности поломки механизма, вследствие возможного брака продукции и по ряду других причин. Поэтому при значительном снижении напряжения в сети или его исчезновении двигатели, как правило, должны автоматически отключаться специальной защитой минимального напряжения .

Защита минимального напряжения (нулевая защита) в схемах контакторно-релейного управления двигателями осуществляется линейными контакторами, электромагнитными пускателями или специальными реле минимального напряжения .

Например, в схемах дистанционного управления с кнопками «пуск» и «стоп» при питании цепей управления и главных цепей от общего источника защиту минимального напряжения выполняет электромагнитный пускатель. В схемах управления крановыми двигателями — линейный контактор.

Напряжение отпускания пускателей и контакторов составляет около 40 — 50% от номинального напряжения катушки, поэтому при значительном снижении или полном исчезновении напряжения в сети пускатель или контактор выпадает, отключая главными контактами двигатель от сети.

Защита минимального напряжения Одновременно размыкается его контакт, шунтирующий кнопку подачи команды «пуск», что исключает возможность самопроизвольного срабатывания магнитного пускателя и включение двигателя после восстановления напряжения. Повторный пуск двигателя в этом случае возможен только после повторного нажатия на кнопку «пуск», т. е. только по команде рабочего, обслуживающего механизм.

В схеме автоматического управления, где пускатели двигателей включаются не кнопками, а различными элементами автоматики, работающими без участия оператора, защита минимального напряжения выполняется специальным реле минимального напряжения. При снижении или исчезновении напряжения реле минимального напряжения отключается, разрывает цепи и тем самым выключает все аппараты схемы управления.

Читайте также:  Преобразователи напряжения для экономии электроэнергии

Если подача команд осуществляется командоконтроллером или ключом управления с фиксированными положениями рукоятки, защита минимального напряжения также осуществляется специальным реле, обмотка которого включается через размыкающий контакт командоконтроллера, замкнутый только при положении рукоятки на нуле и разомкнутый во всех остальных положениях. Контакты всех видов защит, действующих на полное отключение установки, включаются последовательно в цепь обмотки реле минимального напряжения.

Защита минимального напряжения может быть выполнена автоматическими выключателями (автоматами) с расцепителем минимального напряжения , разрешающим включение автомата при напряжении сети не ниже 80 % от номинального и автоматически отключающим включенный автомат при исчезновении напряжения или снижении его до 50% от номинального.

Расцепитель минимального напряжения может быть использован для дистанционного отключения автомата, для чего в цепь его обмотки необходимо включить размыкающий контакт кнопки или другого аппарата. Некоторые автоматы изготовляются со специальной обмоткой отключения, выключающей автомат при включении ее под напряжение.

Источник

Защита от минимального напряжения

От перегрузки двигатель сохраняет токовая защита, реагирующая на возрастание тока, а также синхронный двигатель нельзя оставлять в работе при длительных глубоких снижениях напряжения сети во избежание перегрева, особенно если двигатель полностью нагружен.

После отключения по КЗ происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время КЗ имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственных нужд. В результате напряжение на шинах собственных нужд, а следовательно, и на электродвигателях понижается настолько, что вращающий момент на валу электродвигателя может оказаться недостаточным для его проворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55-65 % Iном.

Для того чтобы обеспечить пуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственных нужд, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.

Для этих целей и предусматривается защита от понижения или исчезновения напряжения, называемая обычно нулевой защитой. Аппаратами этой защиты являются контакторы, магнитные пускатели и специально установленные электромагнитные реле напряжения.

При питании главной цепи и цепи управления от одной сети (например, схемы рис.2 и 3) и кнопочном управлении нулевая защита осуществляется контактором или магнитным пускателем КМ. Действительно, при исчезновении напряжения в сети контактор КМ отпадает, а включение его вновь возможно лишь после нажатия кнопки «Пуск» (SB1) при условии, что напряжение сети будет не меньше 0,85Uн.с. Объясняется это тем, что контакторы переменного тока и магнитные пускатели имеют напряжение надежного срабатывания не менее 0,85Uн.с. Напряжение возврата у них обычно не превышает (0,4-0,5)Uн.с.

В схемах управления с командоконтроллером (обычно для двигателей с фазным ротором) нулевая защита выполняется с помощью реле РН (рис.4). В исходном положении рукоятки командоконтроллера КК катушка реле РН обтекается током и контакт РН замкнут. При переводе командоконтроллера в любое рабочее положение контакт КК размыкается и катушка РН и вся остальная аппаратура получают питание теперь только через контакт РН. Когда напряжение в сети исчезает или резко падает (а также при срабатывании максимальных реле КА), реле РН размыкает свой контакт. Повторное включение двигателя возможно лишь после установки командоконтроллера в исходное положение. Тем самым предотвращается самозапуск двигателя.

Рисунок 3. Схемы нулевой защиты

Иногда цепь управления питается от сети переменного тока, не зависимой от сети, питающей главную цепь двигателя (обычно при напряжении главной цепи 380-500В). В таких схемах нулевая защита главной цепи осуществляется с помощью реле РН1 (рис.4,б), а нулевая защита цеп управления обеспечивается контактором КМ (рис.4,в) или реле РН2 (рис.4,г). На рис.4,г показан вариант включения реле РН2 для сложных схем управления с несколькими командоконтроллерами, пакетными выключателями и другими аппаратами ручного управления. В обеих схемах двигатель может быть включен только при наличии напряжения как в главной цепи, так и в цепи управления. Так как при перерыве питания в главной цепи контакты реле РН1 размыкаются, что приводит к отключению контактора КМ (или реле РН2), самозапуск двигателя становится невозможным. В схеме 4,г перед запуском двигателя нужно предварительно нажать кнопку «Подготовка пуска».

Читайте также:  Что обеспечивает мышечное напряжение

Аналогично выполняется нулевая защита в тех случаях, когда цепь управления питается от сети постоянного тока. Такие схемы применяются для электроприводов повторно-кратковременного режима с большой частотой включений, недопустимой для контакторов с управлением на переменном токе и магнитных пускателей.

В ходе курсовой работы были рассчитаны следующие виды защит:

Трансформатора Т3- 10/0,4 кВ:

— токовая отсечка выполнена на реле РТ-40/100
I ср = 7,02А k ч = 2,8 t сз=0,lc

— максимальная токовая защита выполнена на реле РТ-40/10
I ср=16,18А k ч=9,3 t сз=1,1 c

— расчёт защиты нулевой последовательности
I cp=9,6A t сз=0,5c

Кабельной линииL3 – 10кВ:

— токовая отсечка выполнена на реле РТ-40;

I ср = 1297,2 А t=0,1 с

— максимальная токовая защита выполнена на реле РТ-40/50
I ср=9,83 А k ч=2,02 t сз=0,1c

Асинхронного двигателя М1 – 10кВ:

— токовая отсечка выполнена на реле РТ-40/50
I ср=19,50 А k ч=17,09

— защита от перегрузок выполнена на реле РТ-84
I ср =3,782 A t с.з.=10,5 c

— защита минимального напряжения

Uс.р.= 70 В t с.з.=20c

Трансформатора Т1— 110/10 кВ:

— дифференциальная токовая защита выполнена на реле ДЗТ-11

k ч=4,54 W осн = 13 витка W неосн = 12 витков

W торм = 7 виток

— максимальная токовая защита выполнена на реле РТ-40/50
I ср =7,33 А k ч = 8,96 t сз=2,1с

— защита от перегрузок выполнена на реле РТ-40/20

I ср =6,29 А t сз=2,6с

Асинхронного двигателя М4:

— Определяются данные и выбирается магнитный пускатель ПМ12-125 со встроенным тепловым реле РТТ-З

-Выбираем предохранитель ПН – 2 с номинальным током патрона 250 А и плавкую вставку с

1. Правила устройств электроустановок. 7 издание. – М.: Энергоатомиздат, 2003.

2. Шабад М.А. Расчёты релейной защиты и автоматики распределительных сетей. – Л.: Энергоатомиздат, 1985.

3. Шабад М.А. Защита трансформаторов 10кВ. – М.: Энергоатомиздат, 1989.

4. Шабад М.А. Защита трансформаторов распределительных сетей. – Л.: Энергоатомиздат, 1981.

5. Неклепаев Б.Н., Крючков И.Л. Электрическая часть станций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989.

6. Корогодский В.И. и др. Релейная защита электродвигателей напряжением выше 1 кв. М.: Энергоатомиздат, 1987.

7. Андреев В.А. Релейная защита и автоматика систем электроснабжения. – М.: Высшая школа, 2008.

8. Чернобровов Н.В. Релейная защита.– М.: Энергия, 1974.

9. Андреев В.А. Релейная защита систем электроснабжения. В примерах и задачах. – М.: Высшая школа, 2008.

10. Шеховцов В.П. Расчёт и проектирование схем электроснабжения. – М.: Форум-Инвра, 2008

11. Ангарова Т.В. и др. Справочник по электроснабжению промышленных предприятий. – М.: Энергоатомиздат, 1981.

12. Астахов Б.А. и др. Справочник по электрическим установкам высокого напряжения. – М.: Энергоатомиздат, 1989.

13. Шеховцов В.Л. Справочник-пособие по ЭО и ЭСН. – Обнинск, 1994.

14. Смирнов А.Д., Антипов К.М. Справочная книжка энергетика. – М.: Энергоатомиздат, 1978.

15. Гольстрем В.А., Иваненко А.С. Справочник энергетика промышленных предприятий. Киев.: Техника, 1977.

Рисунок П-1. Схема защиты асинхронного электродвигателя : а —токовые цепи; б —выходное реле защиты минимального напряжения; в —цепи оперативного тока

Рисунок П-2. Схема токовых цепей и цепей оперативного тока дифференциальной защиты, максимальной защиты, защиты от перегрузки силового трансформатора 110/6—10 кВ

Рисунок П- 3. Схема цепей оперативного тока газовой защиты силового трансформатора 110/6—10 кВ и цепи отключения отделителя и включения короткозамыкателя

Источник