Меню

Защита сетей электрического напряжения

Аппараты защиты электрооборудования и электрических сетей

Аппараты защиты электрооборудования и электрических сетейВсе существующие эксплуатируемые или вновь сооружаемые электрические сети должны быть обеспечены необходимыми и достаточными средствами защиты, прежде всего, от поражения электрическим током людей, работающих с этими сетями, участков цепей и электрооборудования от токов перегрузки, токов короткого замыкания, пиковых токов. Эти токи могут привести к повреждению как самих сетей, так и электроприборов, работающих в этих сетях.

Каждая трансформаторная подстанция, каждая воздушная линия, каждая кабельная линия и распределительные внутридомовые сети, каждый электроприёмник имеют аппараты защиты, обеспечивающие их бесперебойную и надежную работу.

Таких аппаратов на данный момент в мире имеется огромный выбор. Их можно подобрать по типу, по способу подключения, по параметрам защиты. Аппараты защиты электрооборудования и электрических сетей очень обширная группа и включает в себя такие аппараты как: плавкие вставки (предохранители), автоматические выключатели, разнообразные реле (токовые, тепловые, напряжения и т. п.).

Автоматические выключатели и предохранители в электрощите

Плавкие предохранители защищают участок цепи от токовых перегрузок и коротких замыканий. Разделяются на одноразовые предохранители и предохранители со сменными вставками. Используются и в промышленности и в быту. Существуют предохранители работающие на напряжении до 1кВ и так же высоковольтные предохранители установленные, работающие на напряжении выше 1000В (например, плавкие предохранители на трансформаторах собственных нужд подстанций 6/0,4 кВ). Удобство в эксплуатации, простота конструкции и легкость при замене обеспечили предохранителям очень большую распространенность.

Подробнее про плавкие предохранители и их использование для защиты электроустановок смотрите здесь:

Плавкий предохранитель

Автоматические выключатели играют ту же роль, что и предохранители. Только по сравнению с ними имеют более сложную конструкцию. Но при этом пользоваться автоматическими выключателями гораздо удобнее. В случае возникновении, например, короткого замыкания в сети в следствии старения изоляции, автоматический выключатель отключит от питания повреждённый участок. При этом сам легко восстанавливается, не требует замены на новый и после проведения ремонтных работ будет снова защищать свой участок сети. Так же пользоваться выключателями удобно при проведении каких либо регламентных ремонтных работ.

Автоматические выключатели

Производятся автоматические выключатели с широким спектром номинальных токов. Что позволяет подобрать нужный практически под любую задачу. Работают выключатели на напряжении до 1 кВ и на напряжении свыше 1кВ (высоковольтные выключатели).

Высоковольтные выключатели, для обеспечения чёткого расцепления контактов и предотвращения появления дуги производятся вакуумными, наполненными инертным газом или маслонаполненными.

В отличии от плавких предохранителей автоматические выключатели производятся как для однофазных так и для трехфазных сетей. То есть существуют одно-, двух-, трех-, четырехполюсные выключатели контролирующие три фазы трехфазной сети.

Автоматический выключатель ВА

Например, при появлении короткого замыкания на землю одной из жил питающего кабеля электродвигателя автоматический выключатель отключит питание на всех трех, а не на одной поврежденной. Так как после исчезновения одной фазы электродвигатель продолжил бы работу на двух. Что не допустимо, так как является аварийным режимом работы и может привести к преждевременному выходу его из строя. Автоматические выключатели производятся для работы с постоянным и переменным напряжением.

Подробнее про автоматические выключатели смотрите здесь:

Про выключатели на напряжение выше 1000В:

Так же для защиты электрооборудования и электрических сетей разработано множество разнообразных реле. Под каждую задачу можно подобрать необходимое реле.

Тепловое реле — самый распространённый тип защиты электродвигателей, нагревателей, любых силовых приборов от токов перегрузки. Принцип его действия основан на возможности электрического тока нагревать проводник, по которому он протекает. Основная часть теплового реле – биметаллическая пластина. Которая при нагревании изгибается и тем самым разрывает контакт. Нагрев пластины происходит при превышении током его допустимого значения.

Тепловое реле

Токовые реле , контролирующие величину тока в сети, реле напряжения , реагирующие на изменения напряжения питания, реле дифференциального тока , срабатывающие при возникновения тока утечки.

Как правило такие токи утечки весьма малы, и автоматические выключатели совместно с предохранителями на них не реагируют, но могут вызвать смертельное поражение человека при контакте его с корпусом неисправного прибора. При большом количестве электроприёмников требующих подключения через дифференциальное реле, для уменьшения габаритов силового щита, питающего эти электроприёмники, используют комбинированные автоматы.

Сочетающие в себе устройства автоматического выключателя и дифференциального реле (автоматы дифференциальной защиты или дифавтоматы). Часто использование таких комбинированных защитных устройств бывает весьма актуально. При этом снижаются габариты силового шкафа, облегчается монтаж и следовательно уменьшаются затраты на установку.

Автомат дифференциальной защиты

На основе реле на производстве собирают шкафы релейных защит. Сборные шкафы релейных защит обеспечивают стабильную работу потребителей разных категорий. Примером подобной защиты является собранный на базе реле и цифровых блоков защит автоматический ввод резерва (АВР). Надежный способ обеспечения потребителей резервным электроснабжением, при потере основного.

Реле максимального тока РТ-40

Для работы АВР необходимо наличие хотя бы двух источников питания. Для потребителей первой категории наличие устройства АВР является обязательным условием. Так как перебои в электроснабжении для этой категории потребителей может привести к опасности для жизни людей, нарушению технологических процессов, материальному ущербу.

Устройства защиты должны выбираться согласно параметрам потребителя, характеристике проводников, токов короткого замыкания, типа нагрузки.

Источник



Обзор устройств для защиты от перенапряжения в сети

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).
Читайте также:  Инвертор напряжения 3 вольта

На рисунке ниже наглядно продемонстрирована величина грозового (U гр) и коммутационного импульса (U к) по отношению к номинальному напряжению сети (U н).

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Читайте также:  Как поднять выходное напряжение трансформатора

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.
https://www.youtube.com/watch?v=AyTLz6G9Ul8

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

Источник

Правильная защита для современного электрооборудования

Совершенно очевидно, что электрооборудование необходимо защищать. Вот, например, как трактует ПУЭ (редакция 2002 года), раздел 3, глава 3.1 «Защита электрических сетей напряжением до 1 кВ», это понятие: «…3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Что такое – защита электрооборудования

Совершенно очевидно, что электрооборудование необходимо защищать. Вот, например, как трактуетПУЭ (редакция 2002 года), раздел 3, глава 3.1 «Защита электрических сетей напряжением до 1 кВ», это понятие: «…3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Как видим, в понятие «защита электрооборудования», прежде всего, вкладывается смысл защиты последнего от токов короткого замыкания и перегруза, которые могут появиться в электрических сетях. Это связано с тем, что при возникновении короткого замыкания в сети протекают токи, намного превышающие допустимые и приводящие к серьезным повреждениям. По сути, задачей защиты является локализация поврежденного («закоротившего») оборудования и исключения его из сети. В общем случае, защита от короткого замыкания защищает неповрежденное оборудование, в котором к.з. не произошло. Таким образом, если уж произошло к.з., необходимо сохранить оставшихся потребителей и питающие сети, а «закоротившее» оборудование вывести из схемы и отправить в ремонт.

Однако, если проанализировать причины появления к.з. в электрооборудовании, можно сказать, что большинство их – следствие некачественного сетевого напряжения.

Показатели качества электроэнергии

Единые требования к электромагнитной среде закрепляют стандартами, что позволяет создавать оборудование и гарантировать его работоспособность в условиях соответствующих этим требованиям. Стандарты устанавливают допустимые уровни помех в электрической сети, которые характеризуют качество электроэнергии (КЭ) и называются показателями качества электроэнергии (ПКЭ). Требования к качеству электрической энергии на территории РФ определяет Межгосударственный стандарт: \«Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»\ ГОСТ 13109-97.К основным показателям качества электрической энергии, определяемых этим ГОСТом относятся:

  • отклонения напряжения, связанные с графиком работы нагрузки;
  • колебания напряжения при резкопеременном характере нагрузки;
  • несимметрия напряжений в трехфазной системе при несимметричном распределении нагрузки по фазам;
  • несинусоидальность формы кривой напряжения при нелинейной нагрузке;
  • отклонение фактической частоты переменного напряжения от номинального значения в установившемся режиме работы системы электроснабжения;
    провалы напряжения – внезапное и значительное снижение напряжения (менее 90 % Uном) длительностью от нескольких периодов до нескольких десятков секунд с последующим восстановлением напряжения;
  • временные перенапряжения – внезапное и значительное повышение напряжения (более 110 % Uном) длительностью более 10 миллисекунд;
  • импульсные перенапряжения – резкое повышение напряжения длительностью менее 10 миллисекунд, достигающие тысяч вольт.

ГОСТ устанавливает два вида норм для ПКЭ: нормально-допустимые и предельно-допустимые. Рассмотрим, на примере отклонения напряжения от номинальных значений, чем грозит электрооборудованию выход за допустимые значения (см. табл. № 1)

ГОСТ устанавливает нормально и предельно допустимые значения установившегося отклонения напряжения на зажимах электроприёмников в пределах соответственно ?Uyнор= ± 5 % и ?Uyпред= ± 10 % номинального напряжения сети.

Таблица № 1. Влияние отклонения напряжения на электрооборудование

Момент двигателя изменяется пропорционально квадрату напря

Срок службы ламп накаливания изменяется пропорционально напряжению в степени 13, 1, светоотдача – 3, 4, светоотдача на 1 кВт-час – в степени 1, 8

Срок службы электронных компонентов сокращается в 4 раза. Возникают ошибки цифровой техники. Выходит из строя программное обеспечение.

Очевидно, что работа электрооборудования даже на пределах допустимых значений, не только значительно сокращает срок его службы и снижает эффективности работы, но зачастую приводит к выходу его из строя. А если учесть, что в наших отечественных сетях, по выражению одного ответственного энергетика, настоящий «винегрет», то выход ПКЭ за допустимые пределы, к сожалению, повседневная реальность.

Два вечных русских вопроса: «кто виноват» и «что делать»?

Международной Электротехнической Комиссией (МЭК) разработаны стандарты по обеспечению защиты от сетевых аварий. Это, в первую очередь:

  • IEC 60364-4-44 (2001) «Электрические устройства зданий. Часть 4-44. Защита для обеспечения безопасности. Защита от резких отклонений напряжения и электромагнитных возмущений»;
  • IEC/TR 62066 (2002) «Перенапряжения и защита от выбросов напряжения в низковольтных системах питания переменного тока. Общая основная информация».

Эти материалы устанавливают единые нормы и правила при проектировании, устройстве и эксплуатации электрических сетей. Но, это, – международная практика, предписывающая защищать потребителей даже в их сетях, с более жесткими требованиями к ПКЭ. А, что же у нас? К сожалению, в действующих отечественных директивных материалах (ГОСТ, ПУЭ, ПТЭ, и т.д.) на сегодняшний день применительно к электроустановкам до 1000 В отсутствуют предписания об обязательной установке защитных устройств от некачественного сетевого напряжения. В последних редакциях ПУЭ появились, правда, требования по установке защит от грозовых и импульсных перенапряжений. Но как быть с напряжением сетевым, не выдерживающим никакой

Итак, устройства, изначально предназначенные для сигнализации о параметрах напряжения, потребители начали применять для защиты своего оборудования от некачественного напряжения.

Немного истории

Самым простейшим устройством для этих целей был блок контроля с маломощным трехфазным трансформатором, подключаемым к соответствующим фазам сети. К выходу трансформатора подсоединялся выпрямитель, собранный по схеме А.Н. Ларионова, между плюсовым и минусовым выводами его включалось реле. При обрыве любой фазы сети указанное реле отключало потребителя от сети.

Им на смену пришли устройства с так называемой сетевой логикой действия. Анализ ПКЭ распределительных сетей 0, 4 кВ показал, что наиболее частым видом аварии сетевого напряжения, помимо указанного выше обрыва фаз, являются изменения последовательности, слипания фаз, вызванные авариями на подстанциях или в самой сети, перекос фаз, отклонения, скачки и провалы напряжения. Для контроля за этими видами аварий стали применять реле, используемые в цепях автоматики высоковольтных сетей, работающими по схожему алгоритму. Но, функционально, реле изначально созданные для установки на распределительных подстанциях не совсем подходили для полноценной защиты по напряжению. Потребителю приходилось мириться с тем, что есть, или устанавливать не одно, а несколько устройств.

Читайте также:  Стабилизатор напряжения релейный рейтинг лучших

Пики или действующие значения

Задача понятная, но не очень простая. К примеру, по какому уровню напряжения надо срабатывать? Из теории электротехники всем известно, что самое правильное срабатывать по действующему значению напряжения. Тут первая проблема. Если бы напряжение было строго синусоидальным, то действующее значение определяется очень просто: максимум, деленный на корень из 2. Но где вы видели в сети синусоиду? (Кстати, еще одно отклонение от ГОСТ). Действующее значение периодической функции можно определить только с помощью применения сложного математического расчета. На заре создания первых реле напряжений дешевое устройство на аналоговых элементах и определяющее действующее значение напряжения создать было практически невозможно. Поэтому стали применять разные компромиссные методы: срабатывание по длительным пикам, фильтрации высших гармоник и т.д. Но достоверной защиты не получалось. Каждый компромисс тянул за собой цепочку недостатков. Например, если процент высших гармоник высок, то их уже надо учитывать, т.к. действующее напряжение при этом будет меняться, и т.д. Работа по пикам только в некоторых случаях может оказаться достоверной – когда этот пик достаточно продолжительный. Но как на аналоговой пороговой схеме отстроиться от кратковременных пиков, не опасных для большинства электрооборудования.

Далее. Кроме уровня напряжения, устройство должно реагировать на перекос. Но если напряжение определено не достоверно, то и перекосы будут определяться недостоверно. Вывод – не можем мерить – не будем мерить. Поэтому и ЕЛ, не меряет перекосы. Кстати, к функциям ЕЛ настолько привыкли, что считают их безоговорочно правильными и под их функции принято создавать алгоритмы сетевых устройств (в частности, АВР), а не наоборот.

Теперь о временах срабатывания. Они должны быть, с одной стороны, как можно меньше, с другой – есть виды отклонений по напряжению, возникающие достаточно часто, но действующие кратковременно и не оказывающие ощутимого вредного воздействия. Например, коммутационные перенапряжения, длящиеся несколько периодов (20-100 мсек.) или кратковременные посадки напряжения, связанные с пуском электродвигателей и включением нагрузки. А тяжелые аварии, такие, как обрыв фаз, нужно отключать как можно быстрее. Т.е., возникла задача различать виды аварии и по каждому из них принимать соответствующее решение. К сожалению, в большинстве существующих на сегодняшний день защитных устройствах эта задача не решена. В преимущественном большинстве существующих реле для отстройки от пусковых посадок выполнена принудительная задержка на срабатывание, причем, в связи с тем, что невозможно различить вид аварии, эта задержка, предназначенная для отстройки только от пусковых посадок, распространяется на все виды аварий, в том числе и на те, которые надо отключать быстро. А если учесть, что задержку надо выполнить не менее 10 сек, то понятно, почему такие приборы нельзя назвать полноценной и достоверной защитой.

Цифра или аналог

Сейчас эра аналоговых устройств если не закончилась полностью, то в стадии окончания.

Взамен аналоговым приборам приходят на смену цифровые микропроцессорные. Сегодня стало возможно на базе микропроцессоров создавать приборы практически с логикой любой сложности. О преимуществах цифровой технологии, в том числе, применительно к защитным устройствам, сказано много и ни у кого не вызывает сомнений в явных преимуществах техники нового поколения перед аналоговыми приборами. Но дешевые изделия пока производить не всем под силу.

По-настоящему цифровые микропроцессорные устройства с широким набором защитных функций и сложной логикой действия для широкого потребления, т.е. низкие по цене, создать под силу немногим. Доказательством этого может служить экспозиция любой специализированной выставки, каталоги зарубежных и отечественных производителей, прочее.

Наш ответ «Чемберлену»

В эпоху рыночной экономики, несмотря даже на «прорехи» в ПУЭ, нет недостатка в предложении реле контроля сетевого напряжения. Причем на рынке представлены как иностранные, так и отечественные производители. Перед потребителем неизбежно встает вопрос, по каким параметрам следует выбирать реле. С одной стороны оно должно стать надежным заслоном на пути недоброкачественной энергии от электросети к нагрузке. С другой стороны, быть надежным и недорогим.

Основными критериями, характеризующими работу реле, должны служить их универсальность и функциональность.

Реле должны быть цифровыми, т. к. реализовать сложную логику действий, точность и надежность, возможно лишь на базе микропроцессорной техники.

Принятие решений о выходе за контролируемые параметры должно осуществляться по действующему или близкому к нему среднему за период значению напряжения. Работа по пиковым значениям напряжения приводит к ложным срабатываниям.

Наличие широкого диапазона регулируемых уставок, тоже является несомненным преимуществом реле.

Схема питания реле должна быть организована от самого измеряемого напряжения, от 3-х фаз одновременно для 3-х фазного реле, чтобы сохранить информативность при наличии хотя бы одной фазы.

Наличие простой и логичной индикации, степень защищенности и климатика, вот, пожалуй, и весь перечень основных параметров, по которым можно произвести сравнительный анализ реле напряжения.

Выводы

Время защищать правильно действительно пришло. Растущее энергопотребление предприятий, энергонасыщенность бытового потребителя приводят к увеличению числа сетевых аварий. Остро назрела необходимость привести ПУЭ к нормам международного права в данной области. Эти правила должны не только регламентировать необходимость, место и способы защиты, но и ввести общие требования к приборам, защищающим от аварий сетевого напряжения. Это положит конец волюнтаризму в этой сфере, когда каждый производитель навязывает потребителю свое видение проблемы, которое, зачастую, очень далеко от идеала. Такая постановка вопроса позволит, во-первых, расчистить рынок от завалов электронного хлама «лжезащит», а, во-вторых, освободит дорогу устройствам, способным надежно, качественно, а главное — правильно, защитить потребителя.

ООО «Новатек-Электро»
Полностью статья опубликована в «Новости электротехники» №4 2004 г.

Источник

Adblock
detector