Меню

Защита симистора от напряжения

Как защитить симистор? Теория и практика.

Имеется установка. Сушит продукцию (эпоксидка). Установка представляет из себя длинный тоннель, поделенный на секции. В каждой секции стоит группа нагревателей и термодатчик. Продукция едет по конвейеру с определенной скоростью, а для каждой секции задана своя температура. Установка работает уже несколько лет и в принципе все нормально. Процесс отлажен, но иногда случаются сбои. То сеть прыгнет, то ТЭН коротнет, то еще чего. Редко но метко вылетают твердотельные реле. Вообще весь контроль построен на терморегуляторах Autonics и ихних же твердотелках SRH1-1430R. Вещи хорошие, добротные, но вот повадился мне таскать их хозяин цеха на ремонт. В принципе они хорошо ремонтируются и потом вполне себе работают. Ремонтировать одну не очень интересно, но вот когда их собирается три — пять штук то потраченный на ремонт вечерок становится уже вполне радостным.

Т.к. всего нагревательных секций восемь, а цена каждого реле пусть и не большая, но всего за восемь релюх, плюс восемь контроллеров собирается вполне серьезная сумма денег. И вот возникла мысль заменить все регуляторы одним восьмиканальным и все реле заменить просто симисторами. Плюс под это дело хозяин машинки захотел контролировать процесс удаленно. Он прав! Весь цех длинный а по линии разбросаны ящики с термометрами, инверторами, выключателями и сотрудники носятся по цеху осматривая показания и поправляя скорости и температуры. В общем захотел хозяин сделать общий пульт и свести управление в одну точку но возникла еще одна задумка.

Дело в том, что ТЭНы время от времени то перегорают, то пробиваются на «землю», то от них провода отваливаются и хотя случается это редко, на то есть постоянно горцающий по цеху электрик — наладчик, но вот если вовремя произошедшее не заметить, то брак обходится в копеечку и хозяину это не нравится. Он хочет точно знать, что конкретный ТЭН сейчас исправен и что реле не пробито. Но поставить электрика у этого щита он не может и периодами случаются сбои.

Как сделать все уровни контроля я знаю за исключением одного вопроса.

Как предотвратить взрыв симистора при коротком замыкании нагрузки?

В чем я вижу проблему.

Открывание симисторов происходит при переходе через ноль (Zero_cross) и до следующего перехода симистор открыт. Если в этот момент или прямо в момент перехода через ноль произойдет КЗ то ток этого КЗ за время одного полупериода спалит кристалл и не спасет вовремя сработавшая защита никак.

Вот и думаю, а нельзя ли что то придумать?

Как вариант может установить плавкие предохранители по каждому каналу?

На сколько эффективны могут быть автоматы?

Может есть иные способы контроля и предотвращения взрывов симисторов?

Источник



Что такое симистор и как с его помощью управлять нагрузкой

Содержание

  1. Что такое симистор и для чего нужен
  2. Особенности и ограничения
  3. Примеры использования
  4. Достоинства и недостатки

Для управления мощными нагрузками в цепях переменного тока часто используются электромагнитные реле. Контактные группы этих приборов служат дополнительным источником ненадежности из-за склонности к обгоранию, привариванию. Также недостатком выглядит возможность искрения при коммутации, что в некоторых случаях требует дополнительных мер безопасности. Поэтому предпочтительнее выглядят электронные ключи. Один из вариантов такого ключа выполняется на симисторах.

Что такое симистор и для чего нужен

В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:

  • отсутствие контактной группы;
  • отсутствие вращающихся и движущихся механических элементов;
  • небольшая масса и габариты;
  • длительный ресурс, независящий от количества циклов включения-выключения;
  • невысокая стоимость;
  • высокое быстродействие и бесшумная работа.

Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).

На самом деле симистор не является в буквальном смысле двумя тринисторами, помещенными в один корпус.

Вся система реализована на одном кристалле с различными зонами p- и n- проводимостей, и эта структура не симметрична (хотя вольт-амперная характеристика триака имеет симметрию относительно начала координат и представляет собой отзеркаленную ВАХ тринистора). И в этом состоит принципиальное отличие симистора от двух тринисторов, каждый из которых должен управляться положительным, по отношению к катоду, током.

Читайте также:  Свойства мдп структуры пороговое напряжение

У симистора по отношению к направлению пропускаемого тока анода и катода нет, но по отношению к управляющему электроду эти выводы неравнозначны. В литературе встречаются термины «условный катод» (МТ1, А1) и «условный анод» (МТ2, А2). Ими удобно пользоваться для описания работы триака.

При подаче полуволны любой полярности, прибор сначала заперт (красный участок ВАХ). Также, как и у тринистора, отпирание триака может произойти при превышении порогового уровня напряжения при любой полярности волны синусоиды (синий участок). В электронных ключах это явление (динисторный эффект), скорее, вредное. Его надо избегать при выборе режима работы. Открывание триака происходит подачей тока в управляющий электрод. Чем больше ток, тем раньше откроется ключ (красный штриховой участок). Этот ток создается приложением напряжения между управляющим электродом и условным катодом. Это напряжение должно быть или отрицательным, или совпадать по знаку с напряжением, приложенным между МТ1 и МТ2.

При определенном значении тока, симистор открывается сразу и ведет себя как обычный диод – вплоть до запирания (зеленый штриховой и сплошной участки). Совершенствование технологий ведет к уменьшению потреблённого тока для полного отпирания симистора. У современных модификаций он составляет до 60 мА и ниже. Но увлекаться снижением тока в реальной схеме не следует – это может привести к нестабильному открыванию триака.

Закрывание, как и у обычного тринистора, происходит при снижении тока до определенного предела (почти до нуля). В цепи переменного тока это происходит при очередном прохождении через ноль, после чего потребуется снова подать управляющий импульс. В цепях постоянного тока управляемое запирание симистора требует громоздких технических решений.

Особенности и ограничения

Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).

Опасность от превышения скорости нарастания тока при коммутации нагрузки связана с конечным временем отпирания симистора. В момент, когда триак ещё не закрылся, может оказаться, что к нему приложено большое напряжение и одновременно через силовой тракт протекает достаточно большой сквозной ток. Это может привести к выделению на приборе большой тепловой мощности, и кристалл может перегреться. Для устранения этого дефекта надо по возможности компенсировать реактивность потребителя последовательным включением в цепь реактивности примерно той же величины, но противоположного знака.

Также надо иметь в виду, что в открытом состоянии на симисторе падает около 1-2 В. Но так как область применения – мощные высоковольтные ключи, это свойство на практическое применение триаков не влияет. Потеря 1-2 вольт в 220-вольтовой цепи сравнима с погрешностью измерения напряжения.

Примеры использования

Основная область использования триака – ключ в цепях переменного тока. Принципиальных ограничений для применения симистора в качестве ключа постоянного тока нет, но и смысла в этом нет. В этом случае проще использовать более дешевый и распространенный тринистор.

Как и любой ключ, симистор включается в цепь последовательно с нагрузкой. Включением и выключением триака управляется подача напряжения на потребителя.

Также симистор можно применять в качестве регулятора напряжения на нагрузках, которым не важна форма напряжения (например, лампы накаливания или термоэлектронагреватели). В этом случае схема управления выглядит так.

Здесь на резисторах R1, R2 и конденсаторе С1 организована фазовращающая цепь. Регулировкой сопротивления добиваются сдвига начала импульса относительно перехода сетевого напряжения через ноль. За формирование импульса отвечает динистор с напряжением открывания около 30 вольт. При достижении этого уровня он открывается и пропускает ток на управляющий электрод триака. Очевидно, что этот ток совпадает по направлению с током через силовой тракт симистора. Некоторые производители выпускают полупроводниковые приборы под названием Quadrac. У них в одном корпусе расположены симистор и динистор в цепи управляющего электрода.

Такая схема проста, но ток её потребления имеет резко несинусоидальную форму, при этом в питающей сети создаются помехи. Для их подавления надо использовать фильтры – хотя бы простейшие RC-цепочки.

Достоинства и недостатки

Достоинства симистора совпадают с плюсами тринистора, описанными выше. К ним надо лишь добавить возможность работы в цепях переменного тока и простое управление в таком режиме. Но имеются и минусы. В основном они касаются области применения, которая ограничена реактивной составляющей нагрузки. Предложенные выше меры защиты применить не всегда возможно. Также к недостаткам надо отнести:

  • повышенную чувствительность к шумам и помехам в цепи управляющего электрода, которая может вызвать ложные срабатывания;
  • необходимость отведения тепла от кристалла — обустройство радиаторов компенсирует небольшие габариты прибора, и для коммутации мощных нагрузок использование контакторов и реле становится предпочтительным;
  • лимитирование по рабочей частоте — оно не имеет значения при работе на промышленных частотах 50 или 100 Гц, но ограничивает применение в преобразователях напряжения.
Читайте также:  Пежо 406 генератор напряжения

Для грамотного применения симисторов необходимо знать не только принципы работы прибора, но и его недостатки, определяющие границы применения триаков. Только в этом случае разработанный прибор будет работать долго и надежно.

Источник

Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

  • А – закрытое состояние.
  • В – открытое состояние.
  • U DRM (U ПР) – максимально допустимый уровень напряжения при прямом включении.
  • U RRM (U ОБ) – максимальный уровень обратного напряжения.
  • I DRM (I ПР) – допустимый уровень тока прямого включения
  • I RRM (I ОБ) — допустимый уровень тока обратного включения.
  • I Н (I УД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).
Читайте также:  Подачи сигналов напряжения переменного тока

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Источник