Меню

Защита транзисторов от токов самоиндукции

Методы защиты транзисторов от пробоя.

Методы защиты транзисторов от пробоя.

Область безопасной работы транзистора определяет границы интервала надежной работы транзистора без захода в область одного из видов пробоя. Применение транзисторов в цифровых и импульсных устройствах копиров связано с возмож­ностью их использования в качестве основы для построения различных схем управления исполнительными узлами и механизмами.

Границы областей безопасной работы (ОБР) транзистора зависят от температуры его корпуса. С увеличением температуры корпуса транзистора границы ОБР, обусловленные тепловым пробоем, перемещаются влево (рис. 1). Границы ОБР, обуслов­ленные лавинным или вторичным пробоем, практически от температуры не за­висят.

Обычно область безопасной работы (ОБР) строится в ко­ординатах I К ( U КЭ ). Различают статическую и импульсную ОБР. Статическая ОБР (рис. 2, а) ограничивается участками: то­кового пробоя (1), теплового пробоя (2), вторичного пробоя (3) и лавинного про­боя (4). При построении ОБР в логарифмическом масштабе все ее участки имеют вид прямых линий.

Рис. 1. Температурная зависимость тока стока полевого транзистора с p / n -переходом

Импульсная ОБР определяется максимальным импульсным током коллектора I К.И.МАКС и максимальным импульсным напряжением пробоя U КЭ. И.МАКС . При малых длительностях импульсов на ней могут отсутствовать участки, обусловленные тепловым пробоем. При длительности импульса менее 1 мкс импульсная ОБР име­ет только две границы I К.И.МАКС и U КЭ. И.МАКС . При увеличении длительности импульса появляются участки, ограничивающие ОБР за счет развития вторичного пробоя (3) и теплового пробоя (2).

Рис. 2. Области безопасной работы биполярного транзистора в статистическом режиме (а) и импульсном режиме (б) при различных длительностях импульсов тока коллектора.

При использовании транзистора необходимо обеспечить нахождение его рабочей точки внутри ОБРбез выхода за ее пределы. Даже кратковременный выход рабочей точки за пределы соответствующей ОБР влечет за собой попадание транзистора в область пробоя. С целью защиты тран­зистора от возможного пробоя обычно формируют траекторию его переключения при работе в ключевом режиме. Для этого к транзистору подключают дополни­тельные цепи, содержащие резисторы, емкости, диоды и стабилитроны. Парамет­ры этих цепей или рассчитывают, или находят экспериментальным путем. Неко­торые из таких схем приведены на рис. 3.

Простейшая цепь, используемая при индуктивной нагрузке транзистора, состоит из последовательно соединенных элементов R и С, как показано на рис. 3 а. Эта цепь работает следующим образом. При запирании транзистора с индуктивной нагрузкой ток в индуктивности, не меняя своего значения и направ­ления, поступает в RC -цепь и заряжает конденсатор С. При этом часть энергии, запасенной в индуктивности, будет израсходована в резисторе R . Благодаря этому исключается импульс большой амплитуды на коллекторе транзистора, который вывел бы рабочую точку за пределы ОБР.

Элементы такой цепи рассчитываются по формулам:

где U М — разность между напряжением источника питания ЕКи максимально допу­стимым напряжением коллектор-эмиттер, определяемым по соответствующей ОБР. Вместо RC -цепи можно использовать диодно-резистивную цепь, представлен­ную на рис. 3 б. В этой схеме при запирании транзистора отпирается диод D , и через него проходит ток индуктивной нагрузки. Для снижения амплитуды им­пульса тока в диоде последовательно с ним иногда включается сопротивление R . Перепад напряжения на транзисторе равен прямому падению напряжения на дио­де, т. е. практически отсутствует.

Рис. 3. Защита транзистора от лавинного пробоя при помощи L С-цепи (а), шунтирующего диода (б) и стабилитрона (в)

Для ограничения выброса напряжения на коллекторе транзистора при его запирании можно использовать ограничитель на стабилитроне D , как показано на рис. 3, в. Все рассмотренные цепи ограничивают предельное напряжение на транзисторе и тем самым предохраняют транзистор от попадания в режим лавин­ного пробоя.

Для защиты транзистора от перегрева и связанного с этим теплового пробоя применяют охладители, к которым крепится корпус транзистора. Применение охладителей позволяет уменьшить перегрев транзистора.

Наиболее сложной проблемой является за­щита транзисторов от вторичного пробоя. При развитии вторичного пробоя транзистор теряет управление по базе, и даже подавая на базу об­ратное смещение, запереть его нельзя. Един­ственным способом защиты транзистора в этом случае является распознавание развития вто­ричного пробоя во время задержки и шунтиро­вание выводов коллектор-эмиттер транзистора с помощью быстродействующего тиристора.

Упрощенная схема защиты транзистора от вторичного пробоя приведена на рис. 4. Схема содержит устройство управления тиристором D защиты, который шунтирует транзистор Т при появлении в его базе колебаний, предшествую­щих развитию вторичного пробоя.

Рис. 4. Защита транзистора от вторичного пробоя.

Методы защиты транзисторов от пробоя.

Область безопасной работы транзистора определяет границы интервала надежной работы транзистора без захода в область одного из видов пробоя. Применение транзисторов в цифровых и импульсных устройствах копиров связано с возмож­ностью их использования в качестве основы для построения различных схем управления исполнительными узлами и механизмами.

Границы областей безопасной работы (ОБР) транзистора зависят от температуры его корпуса. С увеличением температуры корпуса транзистора границы ОБР, обусловленные тепловым пробоем, перемещаются влево (рис. 1). Границы ОБР, обуслов­ленные лавинным или вторичным пробоем, практически от температуры не за­висят.

. Обычно область безопасной работы (ОБР) строится в ко­ординатах I К ( U КЭ ). Различают статическую и импульсную ОБР. Статическая ОБР (рис. 2, а) ограничивается участками: то­кового пробоя (1), теплового пробоя (2), вторичного пробоя (3) и лавинного про­боя (4). При построении ОБР в логарифмическом масштабе все ее участки имеют вид прямых линий.

Рис. 2. Области безопасной работы биполярного транзистора в статистическом режиме (а) и импульсном режиме (б) при различных длительностях импульсов тока коллектора.

При использовании транзистора необходимо обеспечить нахождение его рабочей точки внутри ОБРбез выхода за ее пределы. Даже кратковременный выход рабочей точки за пределы соответствующей ОБР влечет за собой попадание транзистора в область пробоя. С целью защиты тран­зистора от возможного пробоя обычно формируют траекторию его переключения при работе в ключевом режиме. Для этого к транзистору подключают дополни­тельные цепи, содержащие резисторы, емкости, диоды и стабилитроны. Парамет­ры этих цепей или рассчитывают, или находят экспериментальным путем. Неко­торые из таких схем приведены на рис. 3.

Читайте также:  Схема трехфазного инвертора синусоидального тока

Простейшая цепь, используемая при индуктивной нагрузке транзистора, состоит из последовательно соединенных элементов R и С, как показано на рис. 3 а. Эта цепь работает следующим образом. При запирании транзистора с индуктивной нагрузкой ток в индуктивности, не меняя своего значения и направ­ления, поступает в RC -цепь и заряжает конденсатор С. При этом часть энергии, запасенной в индуктивности, будет израсходована в резисторе R . Благодаря этому исключается импульс большой амплитуды на коллекторе транзистора, который вывел бы рабочую точку за пределы ОБР.

Элементы такой цепи рассчитываются по формулам:

где U М — разность между напряжением источника питания ЕКи максимально допу­стимым напряжением коллектор-эмиттер, определяемым по соответствующей ОБР. Вместо RC -цепи можно использовать диодно-резистивную цепь, представлен­ную на рис. 3 б. В этой схеме при запирании транзистора отпирается диод D , и через него проходит ток индуктивной нагрузки. Для снижения амплитуды им­пульса тока в диоде последовательно с ним иногда включается сопротивление R . Перепад напряжения на транзисторе равен прямому падению напряжения на дио­де, т. е. практически отсутствует.

Источник

Защита транзисторов от токов самоиндукции

достоинства:
малый размер
недостатки:
малый размер, только поверхностный монтаж
неточность измерений(в разы)
отсутствие развязки с измеряемым сигналом, измерение тока только нижнего ключа
присутствие силовой высоковольтной цепи и 2х сигнальных на 2х миллиметровом корпусе
отсутствие регулировки выходного сгнала

После пары лет отстронения от силовой электрухи, взялся собирать силовой инвертор.

имеется вот такой кусок схемы:

Смысл обычный — по падению на шунте определять силу тока, для своевременного ограничения на уровне 50 А
показания усиливаю на ОУ, что тоже никого не удивит.

Если шунт будет до банок — возможно и будет работать, а если через него пойдёт импульсный ток, выбросы на нём будут многократно превышать измеряемые значения. Кроме того, если в инверторе есть реактивная составляющая тока, то измерение по питанию корректным не будет.

Ну так ты же последовательно с фетом ставил, стало быть на него все импульсы высаживались.
Тобишь ЭДС самоиндукции шунта бушевала.

По поводу выпрямления — можно мост на шоттках собрать, 2 диода и двойная вторичка(выпрямитель со средней точкой) или оставить однополупериодный, но тогда защита будет только по одному и срабатывать. Есть ещё вариант без диодов с двумя компараторами, но это уже пожалуй лишнее. Естественно нагрузка ТТ только после выпрямителя вешается(так, на всякий случай скажу очевидное). Кондёров можно не ставить, да и смысла особо нет т.к. ёмкость понадобится здоровенная(ввиду сопротивления нагрузки) и быстродействие оно снизит.

Источник

Защита силового ключа от перенапряжения. Сброс скачков напряжения на транзисторе в цепи питания

Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание схемы активного ограничения (10+)

Защита силового ключа от перенапряжения

Суть проблемы

Перед разработчиками импульсных источников питания встает проблема защиты силового ключа от бросков высокого напряжения, вызванных самоиндукцией. Эта проблема характерна для ряда топологий источников питания, в которых силовые транзисторы нагружены на выходной трансформатор. Идеальный трансформатор не накапливает энергии. Но реальные трансформаторы накапливают энергию в магнитном поле от первичной обмотки. При прерывании тока через обмотку накопленная энергия должна куда-то быть отведена. Если этого не сделать, то произойдет пробой силового ключа. Дело в том, что обмотка трансформатора является катушкой индуктивности. А ток через катушку индуктивности не может прекратиться мгновенно (имеет определенную инерцию). Разрыв цепи, через которую идет этот ток, приводит к скачку напряжения в месте разрыва. Если разрыв осуществляется путем закрытия транзистора, то этот транзистор выходит из строя.

Некоторые топологии импульсных источников питания и преобразователей напряжения, такие, как понижающая, повышающая, инвертирующая, полумостовая, мостовая содержат естественные цепи размагничивания (то есть отвода энергии, накопленной в магнитном поле), непосредственно защищающие силовые элементы. Для них описанная проблема не актуальна. А вот в прямоходовых, обратноходовых и пушпульных схемах цепи размагничивания подключены не непосредственно к силовым элементам, а через трансформатор. Как мы знаем, связь между обмотками трансформатора не идеальная. Имеет место некоторая индуктивность утечки (связи), которая препятствует моментальному блокированию скачка напряжения.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Простейший вариант защиты

В этих схемах, если мощность устройства достаточно велика, возникает необходимость в дополнительной защите силовых элементов. Простейшим вариантом такой защиты является установка стабилитрона между эмиттером и коллектором (стоком и истоком) силового ключа. Но такой вариант имеет два недостатка. Во-первых, вся энергия, которую блокирует стабилитрон, теряется, что снижает КПД. Во-вторых, вся энергия, которую блокирует стабилитрон, превращается в тепло, которое нагревает стабилитрон. Появляется необходимость в охлаждении стабилитрона и риск выхода его из строя.

Защита высокой надежности и КПД, с отводом энергии в цепи питания

Более надежной и обладающей большим КПД является схема, приведенная ниже.

В этой схеме избыточная энергия сначала накапливается на конденсаторе C1. Потом энергия с этого конденсатора переходит в катушку L1. А потом энергия, накопленная в L1, передается в цепи питания. То есть потери и нагрев минимизируются.

На схеме изображен вариант защиты для пушпульной топологии, но совершенно аналогично схему можно применять для прямоходовых и обратноходовых преобразователей. Схема подходит как для биполярных, так и для полевых силовых ключей.

Принцип действия

Схема работает так. Броски напряжения на силовых ключах отводятся на накопительный конденсатор C1 через диоды VD1, VD2. Как только напряжение на конденсаторе становится больше напряжения стабилизации стабилитрона VD4 плюс напряжения насыщения перехода база — эмиттер транзистора VT1, транзистор открывается. На катушке L1, а значит, на катушке L2, появляется напряжение. Напряжение с катушки L2 через делитель R3, R2 подается на базу транзистора, что его еще больше открывает и вводит в насыщение. Теперь к катушке L1 приложено напряжение с C1 минус напряжение питания. Ток в катушке постепенно нарастает, катушка накапливает энергию. Как только напряжение на конденсаторе C1 становится меньше некоторой величины, транзистор начинает закрываться, на катушке L1 за счет накопленной энергии напряжение меняет полярность, энергия через диод VD3 отводится в цепи питания. При этом напряжение на L2 также меняет полярность, что способствует полному запиранию транзистора VT1. Таким образом транзистор VT1 работает в ключевом режиме с минимальными потерями и нагревом.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Как не перепутать плюс и минус? Защита от переполюсовки. Схема.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.

Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.

Плавная регулировка, изменение яркости свечения светодиодов. Регулятор.
Плавное управление яркостью свечения светодиодов. Схема устройства с питанием ка.

Расчет силового резонансного фильтра. Рассчитать онлайн, он-лайн, on-l.
Как получить синусоидальное напряжение на выходе при входном напряжении сложной .

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Источник



Методы защиты устройств (датчиков, приборов, контроллеров) с транзисторными выходами от токов самоиндукции

Введение

В данной статье будет рассмотрено явление самоиндукции, проявляющееся зачастую при коммутации индуктивных нагрузок. Также будут рассмотрены способы защиты и используемое для этого оборудование.

Техника безопасности

1. Электромагнитная индукция. Определение. Физический смысл

Электромагнитная индукция — явление возникновения электрического тока, при изменении во времени магнитного поля. Изменение магнитного поля, в силу закона электромагнитной индукции, приводит к возбуждению в контуре индуктивной электродвижущей силы (ЭДС). Процесс возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию, а при убывании тока — препятствует убыванию. Величина ЭДС самоиндукции определяется уравнением:

где:
E — ЭДС самоиндукции
L — индуктивность катушки
dI/dt — изменение тока во времени.

Знак «минус» означает, что ЭДС самоиндукции действует так, что индукционный ток препятствует изменению магнитного потока. Этот факт отражён в правиле Ленца:

Индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Явление самоиндукции можно наблюдать при включении и последующем выключении катушек соленоидов, промежуточных реле, электромагнитных пускателей. При подаче напряжения на катушку создается электромагнитное поле, в следствии чего образуется электродвижущая сила, которая препятствует мгновенному росту тока в катушке. Согласно принципу суперпозиции, основной ток в катушке можно представить в виде суммы токов, один из которых вызван внешним напряжением и сонаправлен с основным током, а второй вызван ЭДС самоиндукции и имеет противоположное направление основному току. Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки. При протекании тока катушка «запасает» энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдает запасенную энергию, стремясь поддержать величину тока в цепи. Это, в свою очередь, вызывает всплеск напряжения обратной полярности на катушке. Данный всплеск может достигать значений во много раз превышающих номинальное напряжение источника питания, что может помешать нормальной работе электронных устройств, вплоть до их разрушения.

Разберем более подробно, почему скачок ЭДС самоиндукции будет иметь обратную полярность. На рисунке 1 изображены две схемы, на которых стрелками обозначено направление движения тока, а так же потенциалы на всех элементах схемы при закрытом и открытом ключе.

Направление тока при закрытом ключеа — закрытый ключ
Направление тока открытом ключеб — открытый ключ

Рисунок 1 — Направление тока при закрытом и открытом ключе

При закрытом ключе потенциалы на всех элементах совпадают с потенциалом источника питания (рисунок 1, а). Во время размыкания ключа, из схемы исключается источник питания, и ЭДС самоиндукции стремится поддержать ток в катушке. Для того, что бы сохранить направление тока в катушке, ЭДС меняет свой потенциал на противоположный по знаку источнику питания (рисунок 1, б). Именно поэтому всплеск ЭДС самоиндукции будет иметь обратную полярность.

Более наглядно этот всплеск показан на рисунке 2. На графике изображено напряжение источника питания Uпит, ток возникающий в катушке I, ЭДС самоиндукции.

График изменения тока и напряжения при коммутацииРисунок 2 — График изменения тока и напряжения при коммутации

2. Теоретический расчет ЭДС самоиндукции

Рассмотрим явление самоиндукции на примере работы электромагнитной катушки при пропускании через нее постоянного тока. Включение катушки происходит при помощи бесконтактного датчика. Катушку можно заменить на последовательно соединенные активное Rk и индуктивное Lk сопротивления (рисунок 3).

Эквивалентная схема электромагнитной катушкиРисунок 3 — Эквивалентная схема электромагнитной катушки

Тогда электрическая схема будет иметь вид, представленный на рисунке 4.

Схема включения электромагнитной катушкиРисунок 4 — Схема включения электромагнитной катушки

При сработавшем датчики падение напряжения U на катушке составляет 24 В. При коммутации индуктивной нагрузки в первый момент времени ток остается равным току до коммутации, а после изменяется по экспоненциальному закону. Таким образом, при переходе управляющего транзистора в закрытое состояние катушка начинает генерировать ЭДС самоиндукции, предотвращающую падение тока. Попробуем рассчитать величину генерируемого катушкой напряжения.

На рисунке 5 показано направление тока при открытом транзисторе. Переход транзистора в закрытое состояние фактически означает что цепь катушки с генерируемым ЭДС самоиндукции замыкается через подтягивающий резистор. Обозначим его Ro. По документации датчика это сопротивление составляет 5,1 кОм.

Направление тока при открытом транзистореРисунок 5 — Направление тока при открытом транзисторе Направление тока после перехода транзистора в закрытое состояниеРисунок 6 — Направление тока после перехода транзистора в закрытое состояние

На рисунке 6 видно что ток на резисторе Ro поменял направление — это обусловлено возникновением ЭДС самоиндукции в катушке. Для полученного замкнутого контура выполняется следующее уравнение:

U R 0 + U Rk + U Lk = 0 U_R0+U_Rk+U_Lk=0

Выражая напряжение через ток и сопротивление, получим:

При этом ток в цепи стремится к значению тока при открытом транзисторе:

Подставим данное выражение в предыдущую формулу, получим величину генерируемого напряжения самоиндукции:

U Lk = − U × ( R k + R 0 ) / R k = − U × ( 1 + R 0 / R k ) U_Lk= -U times ( R_k + R_0 ) / R_k = -U times ( 1 + R_0 / R_k )

Все переменные из этой формулы известны:
U = 24В — напряжение питания
Ro = 5,1кОм — сопротивление подтягивающего резистора датчика
Rk = 900 Ом — активное сопротивление катушки (данные из документации).

Подставив значения в формулу, рассчитаем примерное значение напряжения самоиндукции:

U Lk = − U × ( 1 + R 0 / R k ) = − 24 × ( 1 + 5100 / 900 ) = − 160 В U_Lk= -U times ( 1 + R_0/R_k ) = -24 times ( 1 + 5100 / 900 )=-160 В

Данный расчет упрощен и не учитывает индуктивность катушки, от которой так же зависит ЭДС самоиндукции. Но даже из упрощенного расчета видно, что величина генерируемого напряжения оказывается во много раз больше номинального напряжения 24В.

Воздействие ЭДС самоиндукции может повредить устройства, имеющие общие с индуктивной нагрузкой цепи питания. На рисунке 7 приведена некорректная схема, на которой от одного источника питания подключен бесконтактный датчик и катушка соленоидного клапана.

Неправильная схема подключения

На первый взгляд, данная схема может работать без каких-либо сбоев. Однако, при выключении катушки клапана возникает всплеск напряжения в результате самоиндукции. Всплеск распространяется по цепи питания на клемму «минус» датчика. В результате, разница потенциалов между коллектором и эмиттером закрытого транзистора превышает максимальное значение, что приводит к его пробою.

3. Практическое измерение ЭДС самоиндукции

Чтобы проверить правдивость приведенных выше теоретических расчетов, проведем измерение ЭДС самоиндукции. Для проведения измерений необходимо собрать схему, для которой мы проводили расчеты. При помощи осциллографа на клеммах катушки произведем измерение напряжения (рисунок 8).

Измерение ЭДС самоиндукцииРисунок 8 — Измерение ЭДС самоиндукции

На рисунке 9 изображена осциллограмма значений напряжения самоиндукции катушки с питанием 24 В. На графике видно, что реальный всплеск напряжения при отключении катушки в несколько раз больше напряжения питания и составляет 128 В. Как следствие, транзисторный ключ выйдет из строя. Возникающий скачок ЭДС приводит к пробою транзисторных ключей, бесконтактных датчиков, слаботочных коммутирующих элементов и другим нежелательным эффектам в схемах управления.

ЭДС самоиндукции при выключении катушки с питанием 24 ВРисунок 9 — ЭДС самоиндукции при выключении катушки с питанием 24 В

4. Методы и средства защиты от ЭДС самоиндукции

Для подавления ЭДС самоиндукции и предотвращения выхода из строя оборудования необходимо принимать специальные меры. Для подавления пиков напряжения на катушке во время выключения, необходимо параллельно катушке включить в схему диод (для постоянного напряжения) или варистор (для переменного напряжения). ЭДС самоиндукции будет ограничиваться этими элементами, тем самым они будут обеспечивать защиту схемы.

Диод включается параллельно катушке против напряжения питания (рисунок 10). Таким образом, в установившемся режиме он не оказывает никакого воздействия на работу схемы. Однако при отключении питания на катушке возникает ЭДС самоиндукции, имеющая полярность, противоположную рабочему напряжению. Диод открывается и шунтирует катушку индуктивности.

Схема включения диода для защиты от самоиндукцииа — включение диода в схему PNP
Схема включения диода для защиты от самоиндукцииб — включение диода в схему NPN

Рисунок 10 — Схема включения диода для защиты от самоиндукции

Варистор также включается параллельно катушке (рисунок 11).

Схема включения варистора для защиты от самоиндукции

Рисунок 11 — Схема включения варистора для защиты от самоиндукции

При увеличении напряжения выше пороговой величины, сопротивление варистора резко уменьшается, шунтируя индуктивную нагрузку. Соответственно, при броске тока варистор быстро срабатывает и обеспечивает надежную защиту схемы.

На рисунке 12 изображен график напряжения во время включения и выключения индуктивной катушки с использованием защитного диода для напряжения 24 В.

 ЭДС самоиндукции с использованием диодаРисунок 12 — ЭДС самоиндукции с использованием диода

На графике видно, что использование защитных диодов сглаживает переходную характеристику напряжения.

Для защиты от ЭДС самоиндукции существует целый ряд готовых устройств. Их выбор зависит от применяемой катушки и типа напряжения питания. Для гашения ЭДС самоиндукции на катушках промежуточных реле используют модули FINDER серии 99 (рисунок 13):

Защитный модуль Finder/99.02.9.024.99Рисунок 13 — Защитный модуль Finder/99.02.9.024.99

Модули устанавливаются непосредственно на колодку реле, не требуют дополнительного изменения схемы управления.

В случае подключения катушек пускателей, либо катушек соленоидных клапанов, необходимо использовать защитные клеммники Klemsan серии WG-EKI (рисунок 14):

Защитный клеммник WG-EKIРисунок 14 – Защитный клеммник WG-EKI

Клеммники позволяют осуществить подключение индуктивной катушки без дополнительного изменения схемы. Клеммник имеет два яруса, соединенных между собой защитным диодом либо варистором. Для осуществления защиты необходимо провести провода питания катушки через этот клеммник. При использовании клеммника с защитным диодом необходимо соблюдать полярность при подключении (рисунок 15).

Схема подключения клеммника WG-EKI с защитным диодомРисунок 15 — Схема подключения клеммника WG-EKI с защитным диодом

Заключение

В рамках данной статьи было рассмотрено явление самоиндукции, приведен теоретический расчет ЭДС и практическое подтверждение этого расчета. Применяя модули Finder серии 99 и клеммники Klemsan серии WG-EKI, можно избавиться от пагубного воздействия самоиндукции и сохранить целостность коммутирующих элементов цепей управления.

Инженер ООО «КИП-Сервис»
Хоровец Г.Н.

Список использованной литературы:

  1. Сивухин, Д.В. Общий курс физики. Электричество. Том III / Сивухин Д.В — М.: Наука, 1977. — 724.с.
  2. Калашников, С.Г. Электричество / Калашников С.Г. — 6-е изд., стереот. — М.: Физматлит, 2003.-624.с.
  3. Алексеев Н.И., Кравцов А.В. Лабораторный практикум по общей физике (электричество и магнетизм). Самоиндукция / Лицей No1580 при МГТУ им. Н.Э. Баумана, 2012. — 16 с.

Источник

Электротехника © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.