Меню

Зависимость напряжения от силы тока в трансформаторе

от чего зависит сила тока и напряжение на обмотках трансформатора?

От размера железа (магнитопровода) — зависит МОЩНОСТЬ транса.

А мощность это НАПРЯЖЕНИЕ помноженное на ТОК

На маленьком сердечнике — намотаешь толстый провод и он может сразу сгореть — не выдержит по току.

с вами всё ясно
как в анекдоте
-Ванюшка ты понял
-всё батюшка понял
-и что Ванюшка понял
-а ни чего батюшка не понял

размер трансформатора то бишь площадь сердечника определяет габаритную мощность
то есть максимальный магнитный поток (насыщение) когда магнитный поток не может в сердечнике больше быть
количество силовых линий
магнитная проницаемость
и определяет максимальную мощность нагрузки
а сечение проводников в обмотке плотность тока которая не может быть больше поскольку определяет внутренние сопротивление
БЛИН закон Ома для полной цепи
вот и чем больше диаметр проводника тем меньше внутреннее падение
напряжения соответственно нагрев обмотки
а превышение магнитного потока нагрев сердечника

а трансформатор работает так
первичная обмотка то есть которая создаёт магнитный поток
величиной такой которая лежит примерно в середине петли гистерезиса
без нагрузки во вторичной обмотке
при включении нагрузки вторичная обмотка создаёт магнитный поток
в противоположном направлении магнитному потоку первичной обмотки
и тут чтобы выровнять общий магнитный поток
в первичной обмотке увеличивается ток
ВОТ ТАК МИЛАИ выглядает

Источник

Трансформатор

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Читайте также:  Резистор в цепи переменного тока реактивные сопротивления

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Источник

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ, не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты. Трансформатор может повышать его напряжение (повышающий трансформатор), понижать (например, измерительный трансформатор) или передавать энергию при том же напряжении, при каком он ее получил (разделительный трансформатор). Трансформаторы обладают высоким КПД: от 97% при небольших мощностях до свыше 99% при больших. Они имеют достаточно прочную конструкцию и относительно низкую стоимость на единицу передаваемой мощности.

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из кремнистой стали (рис. 1). На магнитопроводе располагаются две обмотки – первичная P и вторичная S. Для простоты обмотки показаны на разных стержнях магнитопровода. На самом деле при таком расположении обмоток переменный магнитный поток, создаваемый первичной обмоткой в магнитопроводе, недостаточно эффективно используется для наведения ЭДС во вторичной обмотке. Кроме того, такой трансформатор плохо поддавался бы регулированию. На практике первичные и вторичные обмотки располагают близко друг к другу (рис. 2).

На рис. 1 генератор переменного тока A подает ток I напряжения E1 на первичную обмотку P. В рассматриваемый момент ток в верхнем проводнике имеет положительное направление и возрастает, так что первичная обмотка создает в магнитопроводе магнитный поток F по часовой стрелке. Этот поток, пронизывающий обе обмотки, называется потоком взаимоиндукции; его изменение индуцирует электродвижущую силу (ЭДС) как в первичной, так и во вторичной обмотке. ЭДС, индуцированная в первичной обмотке, направлена против тока питания в ней и соответствует противо-ЭДС электродвигателя. ЭДС, индуцированная во вторичной обмотке, соответствует ЭДС электрогенератора и может быть подана на нагрузку.

Величина индуцированной в обмотке трансформатора ЭДС дается формулой E = 4,44 F m fN 10 — 8 В, где F m – максимальное мгновенное значение магнитного потока F в максвеллах, f – частота в герцах и N – число витков. Поскольку поток F m является общим для обеих обмоток, индуцированная в каждой из них ЭДС пропорциональна числу витков в соответствующей обмотке:

В обычном трансформаторе напряжения на зажимах отличаются от индуцированных ЭДС лишь на несколько процентов, так что для большинства практических целей указанные напряжения фактически пропорциональны соответствующим числам витков, V2 /V1 = N2 /N1.

Ток I в отсутствие нагрузки (ток холостого хода) создает магнитный поток F и вместе с приложенным напряжением является источником потерь в магнитопроводе на гистерезис и вихревые токи. В режиме холостого хода потери I 2 R в меди первичной обмотки ничтожны. Ток холостого хода I составляет обычно от 1 до 2% номинального тока трансформатора, хотя в низкочастотных (25 Гц) трансформаторах он может достигать величины 5 или 6%.

Если на рис. 1 переключатель X вторичной цепи замкнут, в ней течет ток. Согласно правилу Ленца, направление тока во вторичной обмотке таково, что он противодействует потоку F . Когда этот поток уменьшается, противо-ЭДС E1 первичной обмотки тоже уменьшается и ток в ней становится больше, обеспечивая передачу мощности, которая снимается затем со вторичной обмотки. Противо-ЭДС E1 отличается от приложенного напряжения V1 всего на 1–2%. Напряжение V1 постоянно. Если E1 постоянна, то поток взаимоиндукции F также постоянен, и, следовательно, постоянна магнитодвижущая сила (число ампер-витков), действующая на магнитопровод. Таким образом, увеличение МДС вторичной обмотки при приложении нагрузки должно уравновешиваться противоположной величиной МДС первичной обмотки. Ток холостого хода мал по сравнению с токами нагрузки и обычно значительно отличается от них по фазе. Пренебрегая им, имеем

Таким образом, в трансформаторе токи практически обратно пропорциональны количеству витков в соответствующих обмотках.

Зависимость напряжения от нагрузки.

На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P и S, причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F , создаваемого первичным током, которая замыкается на одной лишь первичной обмотке P; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния. Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величина V1 представляет напряжение на зажимах первичной обмотки, а I1 – ток в ней, запаздывающий по отношению к V1 на q градусов. Напряжение I1R01 (находящееся в фазе с I1) и напряжение I1X01 (сдвинутое по отношению к I1 на 90 ° и опережающее его) суммируются векторно с V1, давая E1. В результате имеем

Читайте также:  Трансформатор тока до 10квт

Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cos q = 1 и sin q = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением

Для вторичной обмотки имеем R02 = R01(N2 /N1) 2 и X02 = X01(N2 /N1) 2 . Записывая аналогично предыдущему уравнение для Е2, получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).

КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь Pc в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД ( h ) можно получить из формулы

Автотрансформаторы.

Автотрансформатором называют трансформатор, в котором часть обмотки является общей как для первичной, так и для вторичной цепи. При низком коэффициенте трансформации автотрансформатор обеспечивает значительную экономию в стоимости и увеличение КПД по сравнению с обычным двухобмоточным трансформатором.

На рис. 4,а показан автотрансформатор с коэффициентом трансформации 2. Предполагается, что коэффициент мощности равен 1, а потери и ток холостого хода незначительны. Непрерывная обмотка ac на магнитопроводе трансформатора может быть распределена между несколькими катушками на противоположных плечах магнитопровода. Чтобы получить коэффициент трансформации 2, делается отвод b от средней точки обмотки ac, а нагрузка вторичной обмотки подсоединяется между точками b и c. Для преобразования мощности обмотка ab является первичной, а bc – вторичной. Допустим, что ток нагрузки I составляет 20 А при 50 В. Ток 10 А течет от a к b и отсюда к нагрузке dd ў . Мощность, создаваемая током 10 А при падении напряжения 50 В на участке ав, составляет 500 Вт; эта мощность наводит магнитное поле в магнитопроводе, которое проявляется в индуцированном токе I2 = 10 А при напряжении 50 В между c и b. Таким образом, из суммарной мощности 1000 Вт на нагрузке 500 Вт передаются от a к b по проводам без трансформации, а 500 Вт – в результате трансформации. В обычном двухобмоточном трансформаторе потребовалась бы не только обмотка ac, рассчитанная на 100 В и 10 А, но также вторичная обмотка, рассчитанная на 50 В и 20 А и содержащая то же количество меди. Более того, при одной обмотке нужно меньше железа для магнитопровода (сердечника). Следовательно, в автотрансформаторе с коэффициентом трансформации 2 или 1/2 требуется вдвое меньше, чем в двухобмоточном трансформаторе, материала, да и потери сокращаются примерно наполовину.

На рис. 4,б показан автотрансформатор с первичной обмоткой на 100 В и коэффициентом трансформации 4/3. Нагрузка вторичной обмотки составляет 20 А при 75 В, что соответствует мощности на выходе 1500 Вт. Следовательно, первичный ток должен иметь величину 15 А. Отвод b сделан в точке, соответствующей трем четвертям числа витков от c к a. Ток 15 А течет от a к b и отсюда к нагрузке dd ў . Этот ток при падении напряжения 25 В на ab дает 15 ґ 25 = 375 Вт магнитному полю, которое индуцирует ток между c и b 5 А при 75 В, так что подвергаются трансформации только 375 Вт, а остальные 1125 Вт мощности передаются от 100 В- к 75 В-цепи по проводам. Таким образом, чтобы осуществлять трансформацию всей заданной мощности, для указанного трансформатора достаточно всего одной четвертой от того значения мощности, которое должен иметь соответствующий двухобмоточный трансформатор.

Автотрансформаторы обычно используются для регулирования вторичного напряжения и трансформации с небольшими коэффициентами, такими, как 2 или 1/2. Они используются также для пускателей двигателей, уравнительных катушек и для многих других целей, требующих небольших коэффициентов трансформации.

Измерительные трансформаторы.

При высоких напряжениях трудно проводить измерения, поскольку высоковольтные приборы дороги и обычно громоздки; их точность подвержена воздействию статического электричества, к тому же они небезопасны. Когда ток превышает 60 А, нелегко обеспечить высокую точность амперметров из-за больших проводов и значительных ошибок, обусловленных паразитным полем концевых выводов. Кроме того, амперметры и катушки тока в высоковольтных цепях опасны для оператора. В измерительных трансформаторах тока и напряжения используются катушки напряжения на 100 В и катушки тока на 5 А. Вторичные обмотки должны быть заземлены. Если шкалы приборов не откалиброваны в коэффициентах трансформации, то показания надо умножать на соответствующий коэффициент трансформации.

Васютинский С.Б. Вопросы теории и расчета трансформаторов. Л., 1970
Фишлер Я.Л., Урманов Р.Н. Преобразовательные трансформаторы. М., 1974
Баршевский Г.Г., Денисов В.В. Магнитные усилители и трансформаторы. Л., 1981

Источник



Что такое трансформатор – это устройство, способное изменять напряжение переменного тока

трансформатор

Трансформаторы

Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое может изменять напряжение переменного тока (увеличивать или уменьшать).

Трансформаторы тока

Трансформаторы тока

Устройство и принцип работы

Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.

Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.

Устройство и принцип работы

Что касается количества витков, то получается так:

  • если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
  • и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.
Читайте также:  Запасные части для двигателей постоянного тока

Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:

k=w1/w2, где w – это число витков в катушке с соответствующим номером.

Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.

И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.

Что такое трансформатор

  • Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
  • Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).

Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Трансформатор своими руками

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

Схема подключения понижающего трансформатора

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.

Схема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Схема замещения

Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.

По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.

Фазировка

Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.

Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.

Заключение по теме

Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.

Источник