Меню

Зависимость периода колебаний тока от индуктивности

Зависимость периода колебаний тока от индуктивности

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 23. Ученик изучает зависимость периода электромагнитных колебаний в контуре от индуктивности катушки. Какие два контура он должен выбрать для этого исследования?

Согласно формуле Томпсона, период электромагнитных колебаний в колебательном контуре определяется формулой:

где — индуктивность катушки; — емкость конденсатора. В соответствии с этой формулой, для изучения периода колебаний можно менять либо индуктивность, либо емкость. В задании необходимо изучать период в зависимости от индуктивности, следовательно, нужно выбрать два колебательных контура с одинаковой емкостью C, но разной индуктивностью катушки L. Это соответствует номеру 4.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 14
  • 15
  • 16
  • 17
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
  • Вариант 5
  • Вариант 5. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9
  • Вариант 9. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 10
  • Вариант 10. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Конденсатор, катушка и резонанс в цепи переменного тока

теория по физике 🧲 колебания и волны

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u = φ 1 − φ 2 = q C . .

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

q C . . = U m a x cos . ω t

Следовательно, заряд конденсатора меняется по гармоническому закону:

q = C U m a x cos . ω t

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i = q ´ = − C U m a x sin . ω t = C U m a x cos . ( ω t + π 2 . . )

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π 2 . . (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

I m a x = U m a x C ω

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Величина X C , равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура q m a x = 10 − 6 Кл. Амплитудное значение силы тока в контуре I m a x = 10 − 3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q 2 m a x 2 C . . = L I 2 m a x 2 . .

L C = q 2 m a x I 2 m a x . .

√ L C = q m a x I m a x . .

T = 2 π √ L C = 2 π q m a x I m a x . . = 2 · 3 , 14 10 − 6 10 − 3 . . ≈ 6 , 3 · 10 − 3 ( с )

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля → E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля → E к , создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства → E i = − → E к следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции e i ) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

Напомним, что сила переменного тока изменяется по гармоническому закону:

i = I m a x sin . ω t

Тогда ЭДС самоиндукции равна:

e i = − L i ´ = − L ω I m a x cos . ω t

Так как u = − e i , то напряжение на концах катушки оказывается равным:

u = L ω I m a x cos . ω t = L ω I m a x sin . ( ω t + π 2 . . ) = U m a x ( ω t + π 2 . . )

Амплитуда напряжения равна:

U m a x = L ω I m a x

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π 2 . . , или колебания силы тока отстают от колебаний напряжения на π 2 . . , что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

I m a x = U m a x L ω . .

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Величина X L , равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Читайте также:  Сила тока это величина характеризующая электрический заряд

Пример №2. Катушка с индуктивным сопротивлением X L = 500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока I m a x в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

X L = L ω = 2 π ν L

Так как амплитуда напряжения связана с его действующим значением соотношением U m a x = U √ 2 , то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I 2 m a x R 2 . . = U m a x I m a x 2 . .

Упростив это уравнение, получим:

I m a x R = U m a x

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

I m a x = U m a x R . .

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν).

ν 0 = 1 2 π √ L C . .

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.

Алгоритм решения

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν 0 = 1 2 π √ L C . .

По мере увеличения внешней частоты от нуля до ν амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν 0 m i n = 1 2 π √ L m i n C . .

ν 0 m a x = 1 2 π √ L m a x C . .

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке

Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.

Источник

Зависимость периода колебаний тока от индуктивности

§ 54. Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L — индуктивность катушки;
— скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL, (58)

где XL — индуктивное сопротивление, ом;
ω — угловая частота переменного тока, рад/сек;
L — индуктивность катушки, гн.
Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L, (59)

где f — частота переменного тока, гц.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение . Индуктивное сопротивление переменному току при f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.
Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.
На графике (рис. 57, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.
Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.
Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе (рис. 57, б.)
Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Читайте также:  Как определить силу тока в цепи до подключения амперметра

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.
Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.
Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.
В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.
Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.
Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии.
Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Источник

Зависимость периода колебаний тока от индуктивности

Закон Ома и вытекающие из него правила Кирхгофа были установлены для постоянных токов. Однако эти законы остаются справедливыми и для мгновенных значений изменяющихся во времени тока или напряжения, если их изменения происходят не слишком быстро. Электромагнитные возмущения распространяются по цепи со скоростью света с. Если за время τ = l/c, которое необходимо для передачи возмущения в самую отдаленную точку цепи l, сила тока изменяется незначительно, то мгновенные значения тока в начале и конце цепи будут практически одинаковыми. Токи, удовлетворяющие такому условию, называются квазистационарными. Для них справедливо неравенство:

где Т – период изменения тока.

При размерах цепи l

3 м τ = 10 -8 с. Таким образом, вплоть до периодов Т

10 -6 с, что соответствует частоте 10 6 Гц, токи в такой цепи можно считать квазистационарными. Ток промышленной частоты 50 Гц будет квазистационарным для цепей длиной l

Рис.3.9.1. Представление переменных токов с помощью векторных диаграмм

Мгновенные значения квазистационарного тока подчиняются закону Ома, и для него справедливы правила Кирхгофа. Пусть к зажимам сопротивления R (Рис.3.9.1), не обладающего индуктивностью или емкостью (такое сопротивление называется активным), приложено напряжение, изменяющееся со временем по закону:

U = U m cosωt,(3.9.2)

где U m – амплитудное значение напряжения. При выполнении условия квазистационарности ток через сопротивление определяется законом Ома:

Здесь введено обозначение амплитудного значения тока:

Удобно при описании переменных токов использовать векторные диаграммы. Выберем произвольное направление, которое назовем осью токов. Отложим вдоль этого направления вектор тока длиной I m. Поскольку напряжение и ток в данном случае изменяются во времени синхронно, вектор напряжения также будет направлен вдоль оси токов. Его длина равна RI m .

3.9.2. Переменный ток, текущий через индуктивность

Рис.3.9.2. Переменный ток, текущий через индуктивность

Подадим переменное напряжение на концы индуктивности L с пренебрежимо малыми сопротивлением и емкостью (Рис.3.9.2). Через индуктивность будет течь переменный ток, вследствие чего возникнет ЭДС самоиндукции:

Используя второе правило Кирхгофа, можем записать:

В данном случае все напряжение приложено к индуктивности. Следовательно, величина

и есть падение переменного напряжения на индуктивности.

Перепишем уравнение (3.9.6) в виде:

Интегрируя (3.9.8), получим:

Постоянный ток в данном примере отсутствует, поэтому const = 0. Следовательно, имеем:

Из сопоставления (3.9.11) и (3.9.4) следует, что роль сопротивления в цепи с индуктивностью играет величина:

X L = ωL,(3.9.12)

которую называют реактивным индуктивным сопротивлением.

Как видно из (3.9.12), величина индуктивного сопротивления растет при увеличении частоты тока. Постоянному току индуктивность сопротивления не оказывает.

Используя (3.9.6) и (3.9.11), падению напряжения на индуктивности можно придать вид:

Из сравнения (3.9.13) и (3.9.10) следует, что между током и напряжением в цепи с индуктивностью существует сдвиг фаз на 90 0 , причем ток отстает по фазе от напряжения. На векторной диаграмме это обстоятельство можно отразить как на Рис.3.9.2б.

3.9.3. Переменный ток, текущий через емкость

Рис.3.9.3. Ток и напряжение в цепи с емкостью

Пусть переменное напряжение подано на емкость С (Рис.3.9.3) Индуктивностью и сопротивлением подводящих проводов пренебрегаем. Емкость непрерывно перезаряжается, благодаря чему через нее протекает переменный ток. Напряжение на конденсаторе можно считать равным внешнему напряжению:

Умножая (3.9.14) на С и дифференцируя по времени, получим ток:

Величина Х С в цепи с емкостью играет роль сопротивления и называется реактивным емкостным сопротивлением.

Для постоянного тока Х С = ±, так как постоянный ток течь через конденсатор не может. Переменный ток через конденсатор проходит, причем сопротивление току тем меньше, чем больше частота.

Заменив в соотношении (3.9.14) амплитуду напряжения, используя (3.9.16), имеем:

Сравнив (3.9.17) и (3.9.15), можно сделать вывод, что между током и напряжением в цепи с емкостью существует сдвиг фаз на 90 0 , причем ток опережает по фазе напряжение. На векторной диаграмме это обстоятельство можно отразить как на Рис. 3.9.3б.

3.9.4. Переменный ток, текущий через цепь с емкостью, индуктивностью и активным сопротивлением

Рис.3.9. 4. Цепь с индуктивностью, емкостью и активным сопротивлением

Рассмотрим цепь, включающую в себя активное сопротивление, индуктивность и емкость (Рис.3.9.4). Подадим на эту цепь переменное напряжение с частотой ω . В цепи возникнет переменный ток с той же частотой. Он вызовет падение напряжения на активном сопротивлении U R . Фаза этого напряжения совпадает с фазой тока, поэтому вектор напряжения откладывают вдоль оси токов. Падение напряжения на индуктивности U L опережает ток по фазе на 90 0 , поэтому вектор, изображающий U L , должен быть повернут относительно оси токов на 90 0 против часовой стрелки. Наконец, падение напряжения на емкости U С отстает по фазе от тока на 90 0 и должно быть изображено вектором U С , повернутым относительно оси токов на 90 0 по часовой стрелки.

Сложив векторы, изображающие U L , U R и U С , получим вектор, изображающий приложенное напряжение U. Его длина равна U m . Этот вектор образует с осью токов угол φ, тангенс которого можно вычислить из Рис.3.9.4:

Угол φ дает разность фаз между напряжением U и силой тока i. Из Рис.3.9.4 следует также, что:

Итак, если напряжение на зажимах цепи изменяется по закону:

то в такой цепи будет течь ток:

называется полным сопротивлением цепи. При этом величина

носит наименование реактивного сопротивления . Поэтому формулу (3.9.23) можно представить в виде:

Ток отстает от напряжения (φ > 0) или опережает его (φ L и Х С .

Если , то φ > 0, и ток отстает от напряжения по фазе;

  • Если , то φ

  • , то φ = 0, и ток и напряжение изменяются синфазно.

    Для выполнения 3 условия необходимо, чтобы частота имела значение:

    Если частота внешнего напряжения имеет значение (3.9.25), полное сопротивление цепи имеет наименьшее значение, равное:

    Z = R.(3.9.26)

    Соответственно, сила тока будет иметь наибольшее значение. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, приложенному к цепи:

    Читайте также:  Устройств управления двигателей постоянного тока

    U = U R .(3.9.27)

    Падения напряжения на индуктивности и емкости равны по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений , а частота (3.9.25) – резонансной.

    При ω = ω рез имеем для амплитуд напряжений на индуктивности и емкости :

    Если , то падения напряжения на индуктивности и емкости будут превышать напряжение, приложенное к цепи.

    Если емкость в цепи отсутствует, приложенное напряжение равно сумме напряжений на сопротивлении и индуктивности (Рис. 3.9.5):

    U = U R + U L .(3.9.29)

    Тогда из Рис. 3.9.5 следует, что:

    Эти формулы совпадут с выражениями (3.9.18) и (3.9.20) соответственно, если в последних положить , т.е. С = ± . Таким образом, отсутствие емкости в цепи означает именно условие С = ± . Действительно, постепенный переход от цепи, содержащей емкость, к цепи без емкости можно представить себе как сближение обкладок конденсатора вплоть до их полного соприкосновения. Но в этом случае расстояние между ними уменьшается, а емкость возрастает.

    3.9.5. Мощность, выделяемая в цепи переменного тока

    Рис.3.9.5. Векторная диаграмма для цепи с индуктивностью и сопротивлением

    Мгновенное значение мощности, выделяемой в цепи, равно произведению мгновенных значений напряжения и силы тока:

    P(t) = U(t)I(t) = U m cosωt·I m cos(ωt-φ).(3.9.31)

    соотношению (3.9.31) можно придать вид:

    Практический интерес представляет среднее по времени значение Р(t), которое обозначим через Р. Так как среднее значение cos(2ωt-φ ) = 0, то выполняется:

    Средняя мощность выделяется в активном сопротивлении в виде тепла. Используя векторную диаграмму Рис. 3.9.4, можно получить:

    Подставляя (3.9.34) в (3.9.33) и учитывая, что , получаем:

    Такую же мощность развивает постоянный ток, для которого сила тока равна величине:

    Величина (3.9.36) называется действующим , или эффективным , значением силы тока. Аналогично для напряжения имеем действующее значение:

    Используя (3.9.36) и (3.9.37), формулу (3.9.33) можно представить в виде:

    Входящий в (3.9.38) множитель cosφ называют коэффициентом мощности . Если реактивное сопротивление Х = 0, то, согласно (3.9.34), cosφ = 1, и P = UI (выделяется максимальная мощность). При чисто реактивном сопротивлении цепи R = 0 и cosφ = 0, поэтому средняя мощность также равна нулю. В данном случае невозможно получить выделяемую мощность, отличную от нуля. В электротехнике для сокращения потерь поэтому стремятся сделать значение cosφ как можно больше.

    3.9.6. Свободные колебания тока в электромагнитном контуре без потерь

    В цепи, содержащей параллельно соединенные индуктивность и емкость, возникают электрические колебания. Такая цепь называется колебательным контуром (Рис.3.9.6).

    Рис.3.9.6. Электромагнитные колебания в колебательном контуре

    Для того, чтобы вызвать колебания, можно присоединить отключенный от индуктивности конденсатор к источнику тока, вследствие чего на обкладках возникнут разноименные заряды величиной q m (стадия 1). Между обкладками возникнет электрическое поле, энергия которого равна . Если затем отключить источник тока и замкнуть конденсатор на индуктивность, емкость начнет разряжаться, и в контуре потечет ток. В результате энергия электрического поля начнет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленная током, текущим через индуктивность. Эта энергия равна величине .

    Так как считается, что активное сопротивление равно нулю, полная энергия не расходуется на нагревание и будет оставаться постоянной. Поэтому в момент, когда напряжение на конденсаторе и энергия электрического поля в нем равны нулю, энергия магнитного поля и величина тока достигают максимального значения (стадия 2).

    В дальнейшем ток уменьшается и, когда заряды на обкладках конденсатора достигнут первоначальной величины, сила тока становится равной нулю (стадия 3). Отметим, что знаки зарядов на обкладках конденсатора противоположны тем, что были на начальном уровне.

    Затем те же процессы протекают в обратном порядке (стадии 4 и 5), и весь цикл повторяется снова и снова. В ходе описанного процесса периодически изменяются (колеблются) заряд на обкладках, напряжение на конденсаторе, сила тока, текущего через индуктивность.

    Колебаниям в контуре можно сопоставить колебания пружинного маятника.

    Из сопоставления электрических и механических колебаний следует, что энергия электрического поля аналогична потенциальной энергии упругой деформации, а энергия магнитного поля аналогична кинетической энергии. Индуктивность L играет роль массы m, величина, обратная емкости С -1 , — роль коэффициента жесткости k. Наконец, заряду q соответствует смещение маятника х, а силе тока — скорость.

    Во время колебаний внешнее напряжение к контуру не приложено. Поэтому падения напряжения на емкости и на индуктивности в сумме должны дать нуль:

    Разделив (3.9.39) на величину L и используя выражение для тока , получим:

    Если ввести обозначение:

    то уравнение (3.9.40) принимает вид:

    Это дифференциальное уравнение 2 порядка, известное как уравнение колебаний. Его решением является функция:

    Следовательно, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой, определяемой формулой (10.41). Это – собственная частота контура. Для периода колебаний из (10.41) можно получить формулу Томсона :

    3.9.7 Электромагнитные волны

    В процессах преобразования электрической энергии в энергию магнитного поля и обратно, происходящих в электромагнитном контуре, возникают электромагнитные колебания, обусловленные неразрывной связью между переменным магнитным и переменным электрическим полями. Максвелл теоретически вычислил, что такие электромагнитные колебания могут распространяться в свободном пространстве со скоростью света, приобретая при этом свойства электромагнитных волн (Рис.3.9.7).

    Рис.3.9.7. Структура электромагнитной волны

    Как видно из рисунка, векторы электрического и магнитного полей образуют с направлением распространения правовинтовую систему. В фиксированной точке пространства эти векторы изменяются со временем по гармоническому закону. Поскольку волна должна распространяться в пространстве, векторы электрического и магнитного полей должны зависеть от координаты:

    Это – уравнения плоской электромагнитной волны, где

    модуль волнового вектора, совпадающего с направлением распространения электромагнитной волны, ω и λ — циклическая частота и длина волны,

    скорость электромагнитной волны, совпадающая со скоростью света.

    Экспериментальное подтверждение теории Максвелла было сделано Г.Герцем в 1888г. Для получения волн Герц использовал изобретенный им вибратор. В колебательном контуре электрическое поле сосредоточено между обкладками конденсатора, а магнитное – внутри катушки. В окружающее пространство эти поля попасть не могут. Чтобы появилось излучение, нужно модифицировать колебательный контур, сделать его открытым. Этого можно достигнуть, увеличивая расстояние между пластинами конденсатора и между витками катушки (Рис.3.9.8). В пределе можно прийти к вибратору Герца – устройству, которое будет излучать электромагнитные волны, если через вибратор пропускать переменный электрический ток.

    Рис.3.9.8. Открытый колебательный контур

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2015

    Источник

    

    Электромагнитные колебания в простом колебательном контуре. Исследование зависимостей периода колебаний от индуктивности и ёмкости

    Страницы работы

    Фрагмент текста работы

    возникает электрическое поле, энергия которого равна 1/2(q 2 /C)/ Если затем отключить источник напряжения и замкнуть конденсатор на индуктивность, ёмкость начнёт разряжаться и в контуре потечёт ток. В результате энергия электрического поля будет уменьшаться, но зато возникает все возрастающая энергия магнитного поля, обусловленного током, текущим через индуктивность . Эта энергия равна 1/2LI 2 . Поскольку активное сопротивление контура равно нулю, полная энергия, слагающаяся из энергий электрического и магнитного полей, не расходуется на нагревание проводов и будет оставаться постоянной. Поэтому в момент, когда напряжение на конденсаторе, а следовательно, и энергия электрического поля обращается в нуль, энергия магнитного поля, а значит, и ток достигают наибольшего значения (стадия 2, начиная с этого момента ток течет за счет э.д.с. самоиндукции). В дальнейшем ток уменьшается и, когда заряды на обкладках достигнут первоначального значения q, сила тока танет равной нулю (стадия 3). Затем те же процессы протекают в обратном направлении (стадия 4 и 5), после чего система приходит в исходное состояние (стадия 5) и весь цикл повторяется снова и снова. В ходе процесса периодически изменяются заряд на обкладках, напряжение на конденсаторе и сила тока, текущего через индуктивность. Колебания сопровождаются взаимными превращениями энергий электрического и магнитного полей.

    Всякий реальный контур обладает активным сопротивлением. Энергия, запасенная в контуре, постепенно расходуется в этом сопротивлении на нагревание, вследствии чего свободные колебания затухают. При наличии в контуре активного сопротивления сила тока опережает по фазе напряжение на конденсаторе более чем на . Затухание характеризуется логарифмическим декрементом затухания .

    Колебательный контур также характеризуется его добротностью, величине, обратно пропорциональной логарифмическому декременту.

    3) Заряд на обкладках конденсатора изменется по гармоническому закону с частотой, определяемой выражением . Эта частота называется собственной частотой контура. Для периода колебаний получается так называемая формула Томсона

    В случае затухающих колебаний R¹0 , формула Томсона преобразуется в:

    Затухание колебаний принято характеризовать логарифмическим декрементов затухания

    здесь — амплитуда соответствующей величины (q, U или I).

    Логарифмический декремент затухания обратен числу колебаний Ne, совершаемых за время, в течении которого амплитуда уменьшается в е раз.

    Добротность контура обратно пропорциональна логарифмическому декременту затуханий: .

    Добротность контура тем выше, чем большее число колебаний успевает совершиться прежде, чем амплитуда уменьшится в е раз.

    В случае слабого затухания

    Схема установки:

    L – катушка с сердечником

    R1, R — сопротивления

    С, С1- конденсаторы

    Н.Л. – неоновая лампа

    Расчётные формулы:

    — формула для расчёта периода колебаний

    -формула для расчёта логарифмического декремента затухания

    -формула для расчёта добротности

    L – индуктивность катушки, Гн

    С – ёмкость конденсатора, Ф

    R – активное сопротивление, Ом

    -отношение между двумя последующими амплитудами колебания

    Источник