Меню

Зависимость тока коллектора при постоянном токе базы это какая характеристика

Основные параметры и характеристики биполярного транзистора.

Продолжаем разбирать все, что связано с транзисторами и сегодня у нас на очереди одна из наиболее часто используемых схем включения. А именно схема включения биполярного транзистора с общим эмиттером (ОЭ)! Кроме того, на базе этой схемы мы рассмотрим основные параметры и характеристики биполярного транзистора. Тема важная и интересная, так что без лишних слов переходим к делу!

Название этой схемы во многом объясняет ее основную идею. Поскольку схема с общим эмиттером, то, собственно, эмиттер является общим электродом для входной и выходной цепей. Вот как выглядит схема с ОЭ для n-p-n транзистора:

Схема с ОЭ для n-p-n транзистора.

А вот так – для p-n-p:

Схема с общим эмиттером.

Давайте снова разбирать все процессы для случая с использованием n-p-n транзистора. Для p-n-p суть остается той же, меняется только полярность.

Входными величинами являются напряжение база-эмиттер ( U_ <бэ>) и ток базы ( I_ <б>), а выходными – напряжение коллектор-эмиттер ( U_ <кэ>) и ток коллектора ( I_ <к>). Обратите внимание, что в этих схемах у нас отсутствует нагрузка в цепи коллектора, поэтому все характеристики, которые мы далее рассмотрим носят название статических. Другими словами статические характеристики транзистора – это зависимости между напряжениями и токами на входе и выходе при отсутствии нагрузки.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.

И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_ <кэ>):

Входные характеристики биполярного транзистора.

Входная характеристика, в целом, очень похожа на прямую ветвь ВАХ диода. При U_ <кэ>= 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_ <кэ>ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы.

Для нее также указывается семейство характеристик для разных значений тока базы:

Выходные характеристики биполярного транзистора.

Видим, что при небольших значениях U_ <кэ>коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_ <кэ>(зато пропорционально току базы). Эти участки соответствуют разным режимам работы транзистора.

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Режимы работы биполярного транзистора.

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_ <бэ>, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано 🙂

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_ <кэ>(возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta , несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_ <кэ>уменьшается и напряжение на коллекторном переходе U_ <кб>. И при определенном значении U_ <кэ>= U_ <кэ \medspace нас>напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_ <кэ>ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!

И, наконец, область 3, лежащая ниже кривой, соответствующей I_ <б>= 0 . Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_ ) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.

Основные параметры биполярных транзисторов.

Давайте теперь рассмотрим, какие существуют параметры биполярных транзисторов, и какие предельные значения они могут принимать.

I_ <КБО>( I_ ) – обратный ток коллектора – ток через коллекторный переход при определенном обратном напряжении на переходе коллектор-база и разомкнутой цепи эмиттера.
I_ <ЭБО>( I_ ) – обратный ток эмиттера – ток через эмиттерный переход при определенном обратном напряжении на переходе эмиттер-база и разомкнутом выводе коллектора.
I_ <КЭО>( I_ ) – аналогично, обратный ток коллектор-эмиттер – ток в цепи коллектор-эмиттер при определенном обратном напряжении коллектор-эмиттер и разомкнутом выводе базы.
U_ <БЭ>( V_ ) – напряжение на переходе база-эмиттер при определенном напряжении коллектор-эмиттер и токе коллектора.
U_ <КБ \medspace проб>( V_ <(BR) CBO>) – напряжение пробоя перехода коллектор-база при определенном обратном токе коллектора и разомкнутой цепи эмиттера. Например, для все того же BC847:

Параметры транзистора.

U_ <ЭБ \medspace проб>( V_ <(BR) EBO>) – напряжение пробоя эмиттер-база при определенном обратном токе эмиттера и разомкнутой цепи коллектора.
U_ <КЭ \medspace проб>( V_ <(BR) CES>) – напряжение пробоя коллектор-эмиттер при определенном прямом токе коллектора и разомкнутой цепи базы.
Напряжения насыщения коллектор-эмиттер и база-эмиттер – U_ <КЭ \medspace нас>( V_ ) и U_ <БЭ \medspace нас>( V_ ).
Конечно же, важнейший параметр – статический коэффициент передачи по току для схемы с общим эмиттером – h_ <21э>( h_ ). Для этого параметра обычно приводится диапазон возможных значений, то есть минимальное и максимальное значения.
f_ <гр>( f_ ) – граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером. При использовании сигнала более высокой частоты транзистор не может быть использован в качестве усилительного элемента.
И еще один параметр, который следует отнести к важнейшим – I_ <К>( I_ ) – максимально допустимый постоянный ток коллектора.

И на этом заканчиваем нашу сегодняшнюю статью, большое спасибо за внимание! Подписывайтесь на обновления и не пропустите новые статьи 🙂

Источник

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Источник

Характеристики биполярных транзисторов

Характеристики биполярных транзисторовВ самом конце предыдущей части статьи было сделано «открытие». Смысл его в том, что небольшой ток базы управляет большим током коллектора. Как раз в этом и заключается основное свойство транзистора, его способность к усилению электрических сигналов. Для того, чтобы продолжить дальнейшее повествование, следует разобраться, насколько велика разница этих токов, и как происходит это управление.

Чтобы лучше вспомнить, о чем идет речь, на рисунке 1 показан n-p-n транзистор с подключенными к нему источниками питания базовой и коллекторной цепей. Этот рисунок уже был показан в предыдущей части статьи.

Небольшое замечание: все, что рассказывается о транзисторе структуры n-p-n вполне справедливо и для транзистора p-n-p. Только в этом случае полярность источников питания следует заменить на обратную. А в самом описании «электроны» заменить на «дырки», везде, где они встречаются. Но в настоящее время транзисторы структуры n-p-n более современны, более востребованы, поэтому в основном рассказывается именно о них.

Характеристики биполярных транзисторов

Маломощный транзистор. Напряжения и токи

Напряжение, прикладываемое к эмиттерному переходу (так принято называть переход база — эмиттер), для маломощных транзисторов невелико, не более 0,2…0,7В, что позволяет создать в цепи базы ток в несколько десятков микроампер. Зависимость тока базы от напряжения база – эмиттер называется входной характеристикой транзистора, которая снимается при фиксированном напряжении коллектора.

К коллекторному переходу маломощного транзистора прикладывается напряжение порядка 5…10В (это для наших исследований), хотя может быть и больше. При таких напряжениях коллекторный ток может быть от 0,5 до нескольких десятков миллиампер. Ну, просто в рамках статьи ограничимся такими величинами, поскольку считается, что транзистор у нас маломощный.

Характеристики передачи

Как уже было сказано чуть выше, маленький ток базы управляет большим током коллектора, как показано на рисунке 2. Следует обратить внимание на то, что ток базы на графике указан в микроамперах, а ток коллектора в миллиамперах.

Характеристики биполярных транзисторов

Если внимательно проследить за поведением кривой, то можно заметить, что для всех точек графика соотношение коллекторного тока к току базы одинаково. Для этого достаточно обратить внимание на точки А и Б, у которых соотношение коллекторного тока к базовому ровно 50. Это как раз и будет УСИЛЕНИЕ ПО ТОКУ, обозначается символом h21э – коэффициент усиления по току.

Зная это соотношение, нетрудно вычислить коллекторный ток Iк = Iб * h21э

Только ни в коем случае не следует думать, что коэффициент усиления у всех транзисторов ровно 50, как на рисунке 2. На самом деле он, в зависимости от типа транзистора, находится в пределах от единиц до нескольких сотен и даже тысяч!

Если требуется узнать коэффициент усиления для конкретного транзистора, который лежит у Вас на столе, то сделать это достаточно просто: современные мультиметры, как правило, имеют режим измерения h21э. Далее будет рассказано, как определить коэффициент усиления, пользуясь обычным амперметром.

Зависимость тока коллектора от тока базы (рисунок 2) называется передаточной характеристикой транзистора. На рисунке 3 показано семейство передаточных характеристик транзистора, при включении его по схеме с ОЭ. Характеристики снимаются при фиксированном напряжении коллектор – эмиттер.

Семейство передаточных характеристик транзистора, при включении его по схеме с ОЭ

Рисунок 3. Семейство передаточных характеристик транзистора, при включении его по схеме с ОЭ

Если посмотреть на это семейство повнимательней, то можно сделать несколько выводов. Во-первых, передаточная характеристика нелинейна, представляет собой кривую (хотя в середине кривой имеется линейный участок). Именно эта кривая и приводит к нелинейным искажениям, если транзистор используется для усиления сигнала, например, звукового. Поэтому приходится рабочую точку транзистора «смещать» на линейный участок характеристики.

Во вторых характеристики, снятые при разных напряжениях Uкэ1 и Uкэ2 эквидистантны (равноудалены друг от друга). Это позволяет сделать вывод, что коэффициент усиления транзистора (определяется углом наклона кривой к оси координат) не зависит от напряжения коллектор – эмиттер.

В третьих характеристики начинаются не с начала координат. Это говорит о том, что даже при нулевом токе базы какой-то ток через коллектор протекает. Это как раз и есть начальный ток, о котором было рассказано в предыдущей части статьи. Начальный ток у обеих кривых различный, что говорит о том, что он зависит от напряжения на коллекторе.

Как снять передаточную характеристику

Проще всего эту характеристику снять, если включить транзистор по схеме, показанной на рисунке 4.

Вращением ручки потенциометра R можно изменять совсем маленький ток базы Iб, что приведет и пропорциональному изменению большого тока коллектора Iк. Такой «творческий» процесс, как вращение ручки потенциометра невольно наводит на мысль: «А нельзя ли как-нибудь этот процесс кручения ручки автоматизировать?» Оказывается можно.

Для этого достаточно вместо потенциометра последовательно с батарей Eб-э подключить источник переменного напряжения, например угольный микрофон, колебательный контур антенны или детектор приемника. Тогда это переменное напряжение и будет управлять коллекторным током транзистора, как показано на рисунке 5.

В данной схеме батарея Eб-э выполняет роль источника смещения рабочей точки транзистора, а усиливаться будет сигнал переменного напряжения. Если подать переменный сигнал, например синусоиду, без смещения, то положительные полупериоды будут открывать транзистор, и, возможно, даже усиливаться.

Но отрицательные полупериоды транзистор попросту закрывают, поэтому не только не усилятся, но даже и не пройдут через транзистор. Это примерно так, как если бы громкоговоритель подключить через диод: вместо приятной музыки и голосов удастся услышать непонятный хрип.

Но достаточно часто усиливают постоянный ток, при этом транзистор работает в ключевом режиме, наподобие реле. Такое применение наиболее часто встречается в работе цифровых схем. В следующей статье именно с ключевого режима, как наиболее простого и понятного мы и начнем рассмотрение различных режимов работы транзистора.

Схемы включения транзисторов

Схемы включения транзисторов

Рисунок 6. Схемы включения транзисторов

До сих пор на всех рисунках транзистор представал перед нами как три квадратика с буквами n и p. На рисунке 6а транзистор показан как на реальной электрической схеме. Тут же показана полярность подключения напряжения, наименования электродов, базовые и эмиттерные токи. А на рисунке 6б в виде конструкции из двух диодов, что часто используется при проверке транзистора мультиметром.

Источник



Большая Энциклопедия Нефти и Газа

Зависимость — ток — коллектор

Зависимость тока коллектора от тока эмиттера в активном режиме практически линейна, поэтому можно считать, что дифференциальный и статический коэффициенты усиления тока приблизительно равны. [1]

Зависимость тока коллектора от напряжения на базе обычно дается в справочных данных на транзистор. [2]

Зависимость тока коллектора от тока эмиттера в активном режиме практически линейна, поэтому можно считать, что дифференциальный и статический коэффициенты усиления тока приблизительно равны. Если зависимость между коллекторным и эмиттерным токами нелинейна, ТО cj ( Хдиф. [3]

Однако зависимость тока коллектора от напряжения на нем получается сильнее, чем для диода. При больших напряжениях на коллекторе происходит лавинное умножение носителей, что также увеличивает ток коллектора. [4]

Характер зависимости тока коллектора от напряже — о ния коллектора не изменяется, если вместо Ue. [6]

Характеристика зависимости тока коллектора транзистора от напряжения между базой и эмиттером имеет два участка с уменьшающей крутизной: в области отсечки коллекторного тока и в области насыщения. Следовательно, уменьшение усиления транзисторного каскада может быть получено путем смещения рабочей точки транзистора по характеристике в одну из этих областей. [8]

Выходная характеристика отображает зависимость тока коллектора 1К от напряжения UK э при постоянном значении тока базы. На начальном участке выходной характеристики 1 резко всзла-стает, т.к. при и 0 носители не проходят с эмиттера на коллектор, а при подаче напряжения U происходит перераспределение потока: 1К растет, I — падает. Поскольку 1 имеет малый удельный вес в общем потоке, то нарастание 1Н происходит не очень значительно. С увеличением тока базы ( при переходе от одной ветви выходной характеристики к другой) концентрация неосновных носителей заряда базы возрастает за счет их чжекции из эмиттера. [9]

Это выражение определяет зависимость тока коллектора от тока базы. [11]

Выходные характеристики выражают зависимость тока коллектора / к от постоянного напряжения коллектора ( относительно базы t / к. ОБ или относительно эмиттера UK. [12]

На рис. 48 показана зависимость тока коллектора от тока эмиттера в схеме с общей базой. Наклон этой кривой характеризует величину усиления по току в указанной схеме. [14]

Источник

Читайте также:  В зависимости от возможности поражения людей электрическим током