Меню

Звуковой сигнал при подачи напряжения

Звуковой сигнализатор для источника питания (авария, КЗ)

При эксплуатации лабораторного блока или другого блока питанияможет быть полезен звуковой сигнализатор, который подаёт сигнал при включении и выключении блока или при возникновении аварийного режима, например, от короткого замыкания.

Если в готовом блоке питания такой функции нет, её можно ввести, собрав несложный сигнализатор, описание двух вариантов которого предлагается вниманию читателей. При этом доработки самого блока питания не потребуется.

Принципиальная схема

Схема однотонального сигнализатора показана на рис. 1. В его состав входят накопительный конденсатор С1, диодный мост VD1-VD4 и акустический излучатель НА1 со встроенным генератором. Подключить сигнализатор можно к выходу стабилизатора напряжения сетевого блока питания.

После подачи сетевого напряжения на выходе блока появится постоянное напряжение и начнётся зарядка конденсатора С1 через диодный мост VD1-VD4 и акустический излучатель НА1.

Схема подключения звукового сигнализатора

Рис. 1. Схема подключения звукового сигнализатора.

При этом на излучателе появится питающее напряжение, он начнёт работать, подавая сигнал. По мере зарядки конденсатора напряжение на излучателе уменьшается и сигнал плавно затихает. При выключении блока питания напряжение на его выходе уменьшается и начинается разрядка конденсатора.

На излучателе появится напряжение, и он начнёт работать — зазвучит звуковой сигнал. Если возникнет авария, например, появится короткое замыкание, сигнализатор также подаст кратковременный сигнал.

Громкость сигнала зависит от напряжения на акустическом излучателе, которое, в свою очередь, определяется выходным напряжением блока питания и скоростью его изменения.

Продолжительность сигнала зависит от времени зарядки конденсатора С1 и определяется как его ёмкостью и током, потребляемым излучателем, так и напряжением блока питания и скоростью его изменения- Так, например, чем медленнее изменяется выходное напряжение блока питания, тем меньше громкость и больше продолжительность сигнала.

С увеличением ёмкости конденсатора С1 в первую очередь растёт продолжительность сигнала. Поэтому самый громкий сигнал будет при возникновении КЗ на выходе блока питания, когда напряжение резко уменьшается.

Печатная плата для схемы сигнализатора

Рис. 2. Печатная плата для схемы сигнализатора.

Внешний вид платы

Рис. 3. Внешний вид платы.

Подключение нескольких пищалок

Рис. 4. Подключение нескольких пищалок.

Печатная плата для схемы с несколькими сигнализаторами

Рис. 5. Печатная плата для схемы с несколькими сигнализаторами.

Все детали можно разместить на односторонней печатной плате из фольгированного стеклотекстолита, чертёж которой показан на рис. 2 В устройстве следует применить конденсатор с номинальным напряжением, превышающим выходное напряжение блока питания. Диоды — любые маломощные выпрямительные.

В сигнализаторе следует применить акустический сигнализатор с большим интервалом питающего напряжения. Кроме указанного на схеме НРМ14АХ с интервалом напряжения 3. 16 В, подойдут, например, НРМ24АХ (3. 16В), НРМ24ВХ-1 (3 . .20 В), SMA13 (1,5. 24 В).

Если максимальное напряжение питания акустического излучателя меньше выходного блока питания, на плату надо установить стабилитрон VD5 с соответствующим напряжением стабилизации.

Продолжительность сигнала при этом уменьшится. Внешний вид смонтированной платы показан на рис. 3. Налаживание сводится к подбору конденсатора С1.

Чтобы сделать устройство двухтональным, в нём следует применить два акустических сигнализатора с разной частотой генерации. Схема такого варианта устройства показана на рис. 4.

В нём при зарядке и разрядке конденсатора напряжение поступает на разные излучатели. При зарядке — на излучатель НА1, при разрядке — на НА2.

Поэтому при включении блока питания будет звучать сигнал одного тока (например, высокого), а при выключении — другого (например, низкого). В данном случае частота излучателя НРМ14АХ — 4900 Гц, а излучателя НСМ1212ВХ- 2300 Гц.

Желательно, чтобы разница частот была как можно больше. Чертёж печатной платы для этого варианта устройства показан на рис. 5, а внешний вид смонтированной платы — на рис. 6.

Фото платы с двумя сигнализаторами

Рис. 6. Фото платы с двумя сигнализаторами.

При использовании акустических излучателей большего размера топологию и размеры печатной платы потребуется изменить. Плату сигнализатора размещают внутри блока питания так, чтобы излучатели располагались напротив отверстий в корпусе блока. Соединения проводят отрезками изолированного монтажного провода.

Источник



Кратковременный звуковой индикатор включения электронных устройств

Часто бывает необходимо озвучить включение какого-либо самодельного или промышленно изготовленного бытового электронного устройства — это необычно, приятно (если подобран мягкий ток звукового сигнала) и необременительно для любого. Прототипом предлагаемого устройства служат давно применяемые в импортных (а в последнее время и в отечественных) бытовых приборах узлы кратковременной звуковой сигнализации. Наглядно это заметно, например, при работе кондиционеров — при его включении или изменении режима работы, как реакция на воздействие пользователя, звучит короткий и приятный на слух звуковой сигнал, длительностью 1—2 с. Особенно это актуально, когда бытовыми приборами управляют с пультов дистанционного управления, — звуковой сигнал подтверждает принятую команду.

Собранное по предлагаемой схеме устройство с успехом применяется в быту для контроля включения света на кухне, добавляя в обычный и привычный интерьер некоторую «звуковую изюминку». Так, при включении света раздается короткий мягкий звуковой сигнал. Можно применять его в туалете для звукового информирования о занятости площади.

Принципиальная схема

В основе электронного узла лежит популярный таймер КР1006ВИ1. Благодаря применению зуммера, в схему нет необходимости вводить какие-либо генераторы импульсов или усилители к ним. Такой же узел несложно собрать и на логических элементах микросхемы КМОП (K561ЛA7 — об этом ниже), однако простое и надежное схемное решение показано на электрической схеме (рис. 2.54).

Читайте также:  Как посчитать действующее напряжение

Эта схема представляет собой таймер для задания коротких фиксированных интервалов времени, в течение которых зуммер BZ1 генерирует сигнал звуковой частоты. После подачи питания на устройство микросхема DA1 КР1006ВИ1 начинает формировать временную задержку, причем в первый момент времени после подачи питания (замыкания контактов включателя SA1) времязадающий конденсатор С1 разряжен, а на выходе таймера (вывод 3 DA1) присутствует низкий уровень напряжения. К зуммеру приложено постоянное напряжение, практически равное напряжению источника питания.

По мере заряда конденсатора С1 через резисторы R1 и R2 и внутренний узел таймера происходит изменение состояние выхода микросхемы. Когда напряжение на обкладках конденсатора С1 достигнет уровня 2/3 напряжения питания, внутренний триггер микросхемы переключится, и низкий уровень напряжения на выходе DA1 сменится высоким. Постоянное напряжение на зуммере будет ничтожно мало, и он прекратит генерировать колебания звуковой частоты.

Кратковременный звуковой индикатор включения электронных устройств

Рис. 2.54. Электрическая схема звукового сигнализатора

При указанных на схеме значениях элементов R1, R2 и С1 задержка выключения звука составит около 8 с. Ее можно увеличить, соответственно увеличив емкость конденсатора С1.

В качестве конденсатора С1 лучше использовать неполярный типа К10-17 или составить его из двух последовательно соединенных оксидных конденсаторов (типа К50-6) с емкостью 2 мкФ — каждый на рабочее напряжение не менее 6 6. Как показала практика, неполярный конденсатор в качестве времязадающего обеспечивает более стабильный временной интервал, чем оксидные, сильно подверженные влиянию окружающей температуры. Длительность временного интервала можно легко сократить, уменьшив сопротивление резистора R1. Если вместо него установить переменный резистор с линейной характеристикой, то получится прибор с регулируемой задержкой. Трансформаторный источник питания подключается параллельно контролируемому устройству в сети 220 В — электролампе.

Функцию данного электронного узла можно поменять на обратную -то есть сделать так, чтобы зуммер молчал первые 10 с после подачи на устройство питания. Для этого верхний (по схеме) вывод зуммера нужно соединить с общим проводом. В таком варианте устройство без особых изменений можно применять для звукового сигнализатора открытой (сверх меры) дверцы холодильника.

Кроме того, вариантов применения данного простого и надежного устройства бесконечно много и они ограничены только фантазией радиолюбителя.

Кнопка на замыкание SA2 служит для сброса устройства в исходное состояние (она пригодится для контроля двери холодильника). Если она не нужна, ее из схемы исключают. «Сбросить» в исходное состояние устройство можно, разомкнув цепь питания включателем SA1.

Элементы устройства закрепляют на монтажной плате. Корпус-любой подходящий. Все постоянные резисторы—типа МЛТ-0,25. Неполярные конденсаторы — типа МБМ, К10-23, К10-17. Зуммер BZ1 может быть любым, рассчитанным на напряжение 4-20 В постоянного тока, например FMQ-2015D, FXP1212.

Источник питания — стабилизированный, обеспечивающий выходное напряжение 5-15 В. Микросхема DA1 функционирует стабильно в этом диапазоне. Ток потребления в активном режиме звукового сигнала с применением указанных на схеме элементов составляет 12-15 мА. Громкость звука такова, что сигнал слышен на расстоянии до 10 м.

Кашкаров А. П. 500 схем для радиолюбителей. Электронные датчики.

Источник

Устройство автомобилей

Электрические звуковые сигнализаторы

Звуковые сигнализаторы автомобилей (звуковые сигналы) предназначены для связи водителя посредством звуков с другими участниками дорожного движения с целью оповещения или предупреждения. Кроме того они применяются для информирования водителя о неполадках в рабочих агрегатах автомобиля или его угоне.

На заре автомобилестроения в качестве звуковых сигналов широко использовались ручные клаксоны, которыми водитель мог отпугивать зазевавшихся пешеходов или гуляющих по проезжей части гусей и кур. По мере развития автомобильной техники совершенствовались и звуковые сигнализаторы, которые должны были издавать звуки достаточной мощности, гармоничной тональности и удобно управляться с водительского места.

Звуковые сигналы современного автомобиля характеризуются уровнем звукового давления (в децибелах) и спектральным составом звука. Наиболее хорошо перекрывают шум движения и слышны в кабине обгоняемого автомобиля сигналы, частотный спектр которых находится в пределах 1800…3550 Гц. Поэтому параметры звукоизлучающих деталей сигнала подбирают таким образом, чтобы его основная звуковая энергия была сконцентрирована в этом диапазоне.
Звуковое давление автомобильного сигнала должно быть в пределах 85. 125 дБ.

При конструировании звуковых сигнализаторов учитываются некоторые особенности распространения звука в воздушной среде.

Возникающее при движении автомобиля вихревое перемещение и уплотнение воздуха способно изменить слышимость сигнала и частоту звуковых колебаний. Чем больше скорость автомобиля, тем меньше расстояние, на котором слышен сигнал, и чем больше разница в скорости источника и приемника звука, тем сильнее изменяется звуковой тон (т. е. частота принимаемых звуковых колебаний).

Кроме того, следует учитывать эффект Доплера, который особенно отчетливо проявляется в момент обгона автомобиля, подающего звуковой сигнал. Следствием эффекта Доплера является изменение частоты колебаний подвижного источника звука при прохождении мимо приемника звука, т. е. сила звука и его тон в этот момент резко изменяются.

Цепь электроснабжения звуковых сигналов обязательно защищается предохранителями.

Классификация электрических звуковых сигнализаторов

Звуковые сигнализаторы, устанавливаемые на автомобили подразделяют:

  • по характеру звучания – на шумовые и тональные;
  • по устройству – на рупорные и безрупорные;
  • по роду потребляемого тока – постоянного и переменного тока.
Читайте также:  Для чего измеряют ток холостого хода трансформатора напряжения

Сигнализаторы также делятся по принципу действия на электрические вибрационные и электропневматические. Последние могут устанавливаться на автомобилях, оснащенных устройствами для получения сжатого воздуха и пневмосистемой. Чаще всего это грузовые автомобили и автобусы.

Шумовые безрупорные звуковые сигналы имеют упрощенную конструкцию и настроены на один звуковой тон. Наиболее широко распространены электрические вибрационные сигналы малой мощности ( 40…60 Вт), обладающие хорошим звучанием.

Рупорные сигнализаторы, как правило, устанавливаются на автомобили парами (один высокого, а другой – низкого тона) с одновременным включением через дополнительное реле. На автомобилях применяют параллельное включение сигналов высокого и низкого тонов. Чтобы звук этих сигналов гармонично сочетался, разница основных частот звука сигналов высокого и низкого тонов обычно составляет 65…100 Гц.

Общее устройство и принцип действия электрических звуковых сигналов

По устройству и принципу действия шумовые и тональные сигналы незначительно отличаются друг от друга.
Основным их исполнительным элементом является электромагнит, катушка которого подключается к сети питания через контакты прерывателя. Якорь электромагнита связан со звукоизлучающей мембраной.

При протекании тока по катушке электромагнита его якорь притягивается к сердечнику, и мембрана прогибается. Одновременно происходит размыкание контактов прерывателя, в результате чего катушка электромагнита обесточивается, и якорь под действием упругой силы мембраны возвращается в исходное положение, вновь замыкая контакты прерывателя. Процесс повторяется до тех пор, пока водитель нажимает на звуковую клавишу.

Колебания звуковой мембраны вызывают звуковые колебания в воздушной среде, при этом частоту таких колебаний (а значит и звуковой тон) можно изменять подбором параметров электромагнита (катушки с якорем) и звуковой мембраны (размер, толщина, материал, форма и т. п.) От частоты колебаний якоря зависит высота тона излучаемого звука. По основной частоте звука сигналы делят на сигналы высокого и низкого тонов.

Рупорный звуковой сигнализатор С-308

Звуковой сигнализатор С-308 ( рис. 1, а) устанавливается на автомобилях ВАЗ-2109 и состоит из корпуса, в котором размещается электромагнит в виде сердечника 10 с обмоткой 11. Внутри электромагнита находится якорь 9 с грузиком 4 и текстолитовой шайбой 13. Якорь жестко прикреплен к мембране 3. В корпусе расположен мостик 5 с подвижным 7 и неподвижным 8 контактами. Для усиления звука имеется составной диффузор (рупор), состоящий из корпуса 2 и крышки 1.
Схема включения сигнализатора С-308 показана на рис. 1, б.

Рис. 1. Звуковой сигнализатор С-308 ( а) автомобиля ВАЗ-2109 и его схема включения ( б): 1 — крышка; 2 — корпус; 3 — мембрана; 4 — грузик; 5 — мостик; 6 — регулировочный винт; 7 и 8 — контакты; 9 — якорь; 10 — сердечник; 11 — обмотка; 12 — ярмо; 13 — шайба; 14 — контакты реле; 16 — обмотка; 17 — кнопка

Так как рупорные сигнализаторы потребляют ток выше допустимого для механических кнопочных переключателей, в цепи сигналов устанавливается вспомогательное реле. В этом случае при включении сигналов через контакты выключателя проходит ток небольшой силы, потребляемый только обмоткой реле, что позволяет избежать окисления и подгорания контактов.

Рупорные тоновые сигнализаторы

Рупорный тоновый сигнализатор ( рис. 2) состоит из электромагнитной системы, создающей колебания мембраны 11, резонатора 10 и корпуса 3. В состав электромагнитной системы входят следующие элементы: обмотка электромагнита 4, сердечник 6, якорь мембраны 5.

Рис. 2. Рупорные сигнализаторы С302-Г и С303-Г: а — устройство ( 1 — резистор; 2 — электрический вывод; 3 — корпус; 4 — обмотка электромагнита; 5 — якорь; 6 — сердечник; 7 — контакты прерывателя; 8 — регулировочный винт; 9 — рессора; 10 — резонатор; 11 — мембрана); б — схема включения ( 1 — реле сигналов; 2 — обмотка электромагнита; 3 — выключатель сигналов; 4 — резистор; 5 — звуковые сигнализаторы; 6 — контакты; 7 — аккумуляторная батарея; 8 — указатель тока; 9 — предохранитель)

Резонатором в тональном сигнале является воздух, находящийся в рупоре, конфигурация которого обеспечивает взаимную настройку частот колебаний мембраны и воздуха, тем самым достигается громкость звука определенного тона. На автомобилях марки «ГАЗ» применяется комплект из двух сигнализаторов (С302-Г и С303-Г), устанавливаемых между радиатором и его облицовкой на кронштейнах с рессорной подвеской.

Сигнализаторы электромагнитные вибрационные рупорного типа отличаются только тональностью. Схема включения сигнализаторов С302-Г и С303-Г показана на рис. 2, б.
Поскольку звуковые сигнализаторы потребляют большой ток, для предотвращения подгорания контактов управляющей клавиши в цепь устанавливают дополнительное реле.

Безрупорный шумовой сигнализатор С304

Безрупорные шумовые сигнализаторы способны излучать относительно однотонный шумовой звук и, благодаря простоте и дешевизне, чаще всего применяются на грузовых автомобилях и автобусах. Один из выводов сигнализатора С304 ( рис. 3) соединяется с положительной клеммой аккумуляторной батареи, а второй через выключатель, соединяющий цепь питания обмотки 15 электромагнита с сердечником 13, на «массу».

Рис. 3. Безрупорный шумовой сигнализатор: 1 — крышка; 2 — шлиц для регулирования; 3 — прижимная шайба; 4 — шпоночный выступ; 5 — пружинная пластина; 6 — пружина регулировочного винта; 7 — регулировочный винт; 8 — корпус; 9 — контакты прерывателя; 10 — центрирующая пружина; 11 — упор стержня; 12 — стержень; 13 — сердечник электромагнита; 14 — конденсатор; 15 — обмотка электромагнита; 16 — пружинная подвеска; 17 — якорь; 18 — мембрана; 19 — резонатор

Читайте также:  Номинальное напряжение провода ас 120

При включении электромагнит притягивает якорь 17, вместе с которым перемещается мембрана 18 с резонатором 19. В конце хода якорь нажимает на пружинную пластину 5, размыкая контакты 9 прерывателя. Цепь электромагнита обесточивается, и под действием мембраны якорь движется в обратном направлении, вновь замыкая контакты 9 прерывателя. Вибрация мембраны передается резонатору 19.

От частоты колебаний мембраны и резонатора зависит основной тон сигнала и диапазон частоты излучаемых звуковых колебаний. Качество сигнала и его тон регулируется винтом 7, расположенным на корпусе 8 с внешней стороны. Регулировочный винт изменяет положение контактов 9 прерывателя относительно якоря 17.

Мембрана 18 зажата винтами между корпусом 8 и крышкой 1. Центральной частью мембрана жестко связана с якорем. Подбором прокладок между корпусом и мембраной регулируется зазор между якорем и сердечником, от которого зависит мощность и тон сигнала, а также сила потребляемого сигнализатором тока.

Схемы управления звуковыми сигнализаторами

Принципиальные схемы управления звуковыми сигнализаторами на автомобилях имеют аналогичные элементы, однако многие производители автомобильной техники используют собственные оригинальные решения для придания своеобразного («фирменного») звука сигналам.

На рис. 4 приведены схемы соединения и включения звуковых тональных сигнализаторов автомобилей марки «ВАЗ» различных моделей и модификаций.

Рис. 4. Схемы соединения звуковых сигнализаторов автомобилей: а — ВАЗ-2101, -2102, -21013, -2121; б — ВАЗ-2103, -2106; в — ВАЗ-2105, -2104, -2107; г — ВАЗ-2108, -2109; 1 — звуковой сигнализатор; 2 — блок предохранителей; 3 — выключатель; 4 — блок реле и предохранителей (монтажный блок); 5 — контактная перемычка (в автомобилях ВАЗ-2107 вместо перемычки установлено реле); 6 — реле включения сигнализаторов

Неисправности звуковых сигнализаторов

Причиной отказа в работе звуковой сигнализации может быть неисправность самого сигнализатора или элементов питающей цепи — перегорание предохранителя, обрыв или короткое замыкание проводки, выход из строя реле или выключателя.
Для поиска неисправностей используется тестер или контрольная лампа. Исправность сигнализатора можно оценить прямым подключением его клемм к выводам аккумуляторной батареи.

Неисправности звуковых сигнализаторов и реле сигнализаторов приводят к тому, что сигнал либо вообще не звучит, либо звучит слабо.

Окисление контактов прерывателей звуковых сигналов снижает силу тока в цепи сигнализатора, а иногда вызывает прекращение его работы. Окисление контактов усиливается при обрыве искрогасящего резистора, а также неисправности конденсатора. Для удаления слоя окислов надо зачистить контакты мелкой шлифовальной шкуркой или надфилем и продуть воздухом.

Нарушение регулировки сигнализаторов приводит к изменению силы прижимания контактов прерывателя и силы тока в обмотке, из-за чего изменяется мощность звука. Кроме того, на частоту и мощность звука существенно влияют изменение расстояния между штифтом и упругой пластиной подвижного контакта, между сердечником и якорьком, между торцом штифта и упругой пластиной.
На рис. 5 приведены схемы регулировок сигнализаторов С303 и РС503.

Рис. 5. Комплект ( а) из двух сигнализаторов (С303 и РС 503) и схема ( б) для их регулировки: 1 — латунная пластина; 2 — якорек; 3 — пружина; 4 — ярмо; 5 — обмотка сердечника, выполненная из 1000 витков провода ПЭЛ диаметром 0,21 мм; 6 — стойка; 7 — контакты реле; 8 — ограничитель; 9 — обмотка; 10 — регулировочные гайки; 11 — пластина неподвижного контакта; 12 — сердечник; 13 — штифт; 14 — контакты; 15 — верхняя пластина; 16 — резистор; 17 — мембрана; 18 — якорь; К, Б и С — зажимы

Реле сигнализаторов можно отрегулировать натяжением пружины якорька. Контакты должны надежно замыкаться при напряжении 8 В и не должны замыкаться при напряжении 6 В. Напряжение замыкания и смыкания контактов контролируется реостатом и вольтметром.

Обрыв обмотки сигнализатора происходит чаще всего из-за разрушения пайки в местах крепления выводов обмотки.

Замыкание на корпус изолированной пластины прерывателя происходит при разрушении текстолитовой пластины, изолирующей упругую пластину крепления контактов прерывателя. При такой неисправности электрическая цепь не размыкается, якорем притягивается к сердечнику со щелчком, прерывание цепи не происходит и сигнал не звучит.

Трещины в мембране являются причиной дребезжащего звука. Неисправность определяется визуально после разборки.

Обрыв обмотки реле сигнализаторов приводит к прекращению работы реле и сигнализаторов.

Окисление контактов реле происходит вследствие ослабления пружины якорька, а также при большой силе тока, потребляемого сигнализаторами. Контакты зачищают мелкозернистой шлифовальной шкуркой и продувают сжатым воздухом.

Сваривание контактов реле возникает при ослаблении натяжения пружины якорька, что приводит к беспрерывному звучанию сигнализаторов. Беспрерывное звучание сигнала может быть и следствием замыкания провода, ведущего к выключателю сигнала, на «массу».

Нарушение регулировки реле сигнализаторов приводит к прекращению звучания или прерывистому звучанию сигнализаторов.

Если звуковой сигнализатор не звучит или звучит прерывисто, необходимо проверить исправность электрической цепи. Проверку цепи сигнала начинают с предохранителя. Затем проверяют провода на обрыв и надежность крепления наконечников проводов на клеммах с помощью контрольной лампы. если в креплении наконечников проводов на клеммах будет плохой контакт, то при вибрации автомобиля нарушается цепь сигнала, что вызывает прерывистое звучание сигнализатора.

Источник